Lecture 1:

The course starts with a review of complex number properties from A level further maths which is
because we will later look at vectors and matrices with complex number entries. There are two new
things that were proven in lecture 1.

.1 a—bi a-bi . . . _
For any complex number z=a+bi, 2 = o5 = "7~ and this can be easily verified. Also, zz = 1z|?,

proven because the modulus and arguments agree.
For any complex number z, sin(arg(z)) = % and cos(arg(z)) = RT?(IZ)' This is immediate from

drawing a little diagram (image below), as it falls right from the o/h and a/h definitions of sin and cos.

Also, many polynomials have roots in the real numbers, but some, such as x? + 1 = 0 do not.
However, that polynomial has a root in the complex numbers. It turns out that all polynomials with
complex coefficients have a root in the complex numbers, and this is called the fundamental theorem
of algebra. In the A level documents, we mentioned this, but did not give the proof as we did not need
to. However, there is a nice visual argument for why this is the case.

Once | have proven this, we know that by repeatedly factoring out z-(our root) from any polynomial in z
until we are left with a constant, that all polynomials are a product of linear factors.

To prove this, | will approach it by first doing an example to show the idea, and then provide the
general proof.

As an example, we will prove that z3 + 222 + 2z + 3 has a root in C. Suppose z = re't where t can go
from 0 to 2t and ris picked to be sufficiently large (we will show this can always be done). Suppose
3it

r=4 for this example. Now consider z3 as we let t change. This is just 64e3 which is a circle of radius

64.




Now lets continuously add 2z? = 32e?¥ to each point. If you picture each point moving to its new
position, you will see they cannot move more than 32 units, which means you can see that the new
loop must enclose the circle centered at the origin of radius 32 as we can never enter this circle during
the continuous transformation.
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Now lets add 2z = 8e't. Something not inside a radius 32 circle moving by 8 units surely won’t be
inside a radius 24 circle. Here’s the new diagram, which must enclose the radius 24 circle.

Now continuously shrink the value of r. As this happens, our diagram will continuously shrink to the
point at 3. Therefore, at some point during the shrinking, our loop will have to touch the origin. There is
no way to continuously move the loop to the point at 3 without breaking it and without touching the
origin. When we do touch the origin, the value of z corresponding to that point is a root of the
polynomial, meaning a root exists. This is the core idea. This happens at the point where we go
from enclosing the origin to not enclosing the origin, which exists and is somewhere between 0 and 4.
Everything is continuous here because it is differentiable, but we will try to avoid getting stuck on
trivial details like these.

So, in general, to pick r large enough, we can make it larger than twice the absolute value of the largest
coefficient. This will ensure that the minimum enclosed circle radius which went from 64 to 32 to 24 to



21 in our above example will stay positive, by a geometric series bounding argument (since each
difference will be at most half of the previous one so the sum of all the differences will be no larger
than the starting value). So | should have picked r=6 in the first example, but 4 turned out to be good
enough for our purposes.

Lecture 2:

We reviewed some complex number properties from A levels, including some of the stuff about
branches from the exponentials and logarithms video in level 4. However, we do prove two new
equations that describe lines and circles.

Aline in the complex plane can be described by a point on the line z; and a direction w so that the line
is all points zy + aw with a real. Write z = zy + aw. Taking conjugates on both sides gives Z = Z; + aw.
For now we will assume |w| = 1.ThenZ —z, = Z — Z, = ad, since recall it is straight forward that
a+ b =a+ bandthatab = ab as can be verified by splitting everything into its real and imaginary
parts and subtracting imaginary parts for the conjugate. Since w™! = @ as |w| = 1 (since w@ =
|w|? = 1), we therefore have (Z—=Z,)w = a, and substituting this into z = z, + aw gives z = z, +
(z=2,)w?. Dividing both sides by w gives z = z, + (Z— Z,) w. Rearranging this gives:

Zw — Zw = zyW — Zyw as the general equation for a line. In fact, we no longer require |w| = 1 as now
we can just divide this equation by |w| to get an equation of the form where the thing being multiplied
by z does have an absolute value of 1.

Acircle can be written as |z — z,| = r and therefore |z — zy|? = |r|?, 50 (z — z0) (Z—Z,) = |7|?, s0
|7|? = zZ + zogZy — zZy — Zzy = |2|* + |20|* — zZy — Zz,. SO we can write the equation for a circle in the
complex plane as

|2|? — 22y — 22y = || — |2|*.

Also, recall that any complex number z can be written as re.1fo e (—m, ] then we can write

log(z) = i8 + log (r) where log is the natural logarithm. The idea is that arg(z) is the imaginary part of
log(z), and Arg(z) which is the multi-valued argument, ie arg(z)+2nm is the imaginary part of Log, where
a capital letter at the start means the multi valued counterpart.

Lecture 3:

A vector can be thought of as an ordered tuple of real or complex numbers, or a line segment, or a

thingy with a magnitude and a direction. If avector v = AB then the direction of vis B-A.

Definition: A vector space V (over R or C) is a set of vectors that satisfies some properties. Examples
of vector spaces are R" and C" where n is some finite number.

Property 1: We can add vectors, and addition satisfies that for vectors a, binV, a+bisinV, atb=b+a
(commutitivity), (a+b)+c=a+(b+c) (Associativity), and there exists an identity vector 0 such that O+a=a
for all a, and for each a there exists a vector -a such that a+(-a)=0 (Inverses). This is exactly the axioms
for an abelian group.

Property 2: We can multiply vectors by scalars, where a scalar is an element of the set which our
vector space is over (which is usually the real numbers or the complex numbers). Scalar
multiplication satisfies the obvious properties: For any scalars A and u, A(a+b)= Aa+Ab, (A+u)a=Aa+pua,
A(pa)=p(Aa)=(hA)a, and 1a=a.



Example: R" is the set of n dimensional vectors which are written as a list with n components that are
each real-valued with addition and multiplication defined component-wise (ie add and multiply each

component). A line in R™ is a vector space if and only if it goes through the origin, as that is necessary
and sufficient for it to satisfy some of the given properties.

Definition: If | have vectors a and b and scalars A and p, then any vector of the form Aa+ub is called a
linear combination of a and b, and analagously if we had more than 2 vectors and corresponding
scalars. The set of all such vectors is called the span of aand b.

Definition: a is parallel to b if a=Ab for some scalar A or b=0. If ais not parallel to b then the span of a
and b is the plane through a, b and the origin, and this is geometrically obvious.

We have met the dot product at A level before. Note that it is only defined for real-valued vectors, for
complex-valued vectors it works a bit differently. Here are some obvious properties of dot products
that follow immediately from either the geometric or algebraic definition, which we showed were
equivalentin A level.

- (Aa).b=A(a.b)
- From the above property and the fact that we showed in A level that a.(b+c)=(a.b)+(a.c), we
have that (Aa+ub).c=A(a.c)+u(b.c)

Note that a.a is the sum of the squares of the components of a by the algebraic definition of the dot
product, so it is equal to |a|? by pythagoras. We can actually define |a| this way as Va.a, and |a| is a
norm. Norms are usually written as either |a| or ||a||, and they satisfy that |a|=0 if and only if a=0,
always being positive, as well as the triangle inequality.

We can get the cosine rule directly from the geometric definition of the dot product: For a triangle

— —_— — 2 2 —_— — _— —_— —
ABC, BC = AC — AB so |BC| =|AC — AB| = AC — AB.AC — AB = AC.AC + AB.AB — 2AC.AB =

|AéC|2 + |ﬁ|2 — 2|AC||AB|cos(BAC) by the geometric definition of the dot product.
Lecture 4:

The Cauchy-Schwartz inequality says |a. b| < |a||b|, which is normally obvious in vector spaces R"
since |cosx| < 1 for real x. However, we can prove this for more general vector spaces:

We know |x — ay|? > 0 for all a since the norm of a vector is always non-negative by definition.
Therefore (x — ay).(x — ay) = 0, so (x.x) + a®(y.y) — 2a(x.y) = 0. Therefore

|x|? + a?|y|? — 2a(x.y) = 0. This is a quadratic in a, and for it to always be positive it cannot have 2
roots so the discriminant must be non-positive, therefore 4(x.y)? — 4|x|?|y|? < 0. Rearranging and
taking the square root of both sides gives |a. b| < |a||b| as required.

Also we have the triangle inequality: |x + y|? = (x + y). (x + y) = |x]|? + |y]? + 2(x.y) < (Ix| + |y])?
by the previous inequality, thus |x + y| < [x]| + |y].

Definition: Vectors vy, v,, V3, ... are linearly independent if a,v; + a,v, + --- a,v, = 0 implies all the
a’s are equal to 0. le, no vectors are a linear combination of the others.

Definition: A basis for a vector space is a set of linearly independent vectors that span the vector
space. A basis is often written as {e;, e,, ... } in general or {i, j, k} in the case of R3.

Note that the cross product is a thing specific to R3.



Recall some easy properties:

a x b =0ifandonlyif a, b are parallel.
c(a x b) = (ca x b) = (a xch)
ax(b+c)=axb+axc
axb=-bxa

These can be shown by determinant properties as the cross product was interpreted as.

i a; bi
j a bil=axb.
k (085 bk

Also, a. (a x b) since a x b is perpendicular to a, and because in fact (a x b). c gives the volume of the
parallelapiped spanned by a, b, ¢, and thus is zero exactly when a, b, ¢ are coplanar. This is called the
scalar triple product

To see this, here is a little picture, note that the volume of the parallelopiped is the area spanned by a
and b times the component of ¢ in the direction of axb.
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Lecture 5:
Interpretation: AxX is X scaled by |a| and rotated 90 degrees in such a way as to be perpendicular to a.

The lecturer also goes from (a;e; + a,e, + aszes) x (bie; + bye, + bzes) and uses the basic cross
product properties above to reach the algebraic formula for the cross product.

The vector triple product is defined as ax(bxc) and gives a vector perpendicular to a in the same
plane as b and c. By expanding definitions it can be shown that ax (b xc)=b(a.c)-c(a.b), but we will give
a nicer proof of this later. Note that ax(bxc) is not generally equal to (axb)xc so we need to be
careful.

Recall that a line through a in the direction of u can be written as (r-a)xu=0 and that a plane through a
with direction vectors u and v can be written as r.n=a.n with n=(uxv) and thus (r-a).(uxv)=0.

Therefore, we can give a general formula for the intersection between a line and a plane by solving for
r:

(r-a)xu=0 by the line equation



So ((r-a)xu)xn=0 by taking the cross product with n on both sides. Using antisymmetry twice so the
sign cancels we get Using the formula for the vector triple product, we get that nx(ux(r-a))=0

u(n.(r-a))-(r-a)(n.u)=0.
Therefore, u(n.r)-r(n.u)=u(n.a)-a(n.u)=(axu)xn.

Let b be any point on the plane, then u(n.b)-r(n.u)=(axu)xnsor = W.

Lecture 6:
Lets also consider the shortest distance between 2 lines: Suppose the lines go through points a4, a,
and have direction vectors u,, u,. Then the equation for the linesisu; x (r —a;) = 0 and

u, x (r —a,) = 0. The shortest distance is in the direction perpendicular to both lines, so if they are
not parallel this is the projection in the direction of u; x u, of a; — a,. Thus the shortest distance

between the lines is given by |(a; — az)__(“l"”Z) )
[ug xus|
Here is an example of solving for a vector:

Say we want to solve forrwhere r + a x (b x r) = c. Then using the formula for the vector triple
product,

r+ (a.r)b—(a.b)r=c
r.a+ (a.r)b.a— (a.b)r.a=c.a
ra=c.a

Which is a plane through ¢ perpendicular to a. We can substitute this intor + (a.7)b — (a.b)r = ¢

c—(a.c)b
1—(a.b)’
or ¢ — (a.c)b is zero meaning r is the full plane through ¢ perpendicular to a.

togetr + (a.c)b — (a.b)r =csor = If a.b=1 then either ¢ — (a.c)b is non zero so r is nothing

New definitions:

An ordered set of vectors a, b, c is right handed if the scalar triple product is positive and left handed
otherwise.

l:i=j

Definition (kronecker delta) 6;; = {O-i £

1:1,j,k is an even permutation
Definition (Levi civite symbol) €;;, = { O:i=jorj=kork=i
—1:i,j,k is an odd permutation

We have discussed what even and odd permutations are in groups.

There is a convention with terms which are products involving these symbols. The convention
(Einstein’s convention) is that if an index like i, j or k appears exactly twice in the expression we sum
over the implied values —typically 1, 2 and 3. For example, if {e;, e;, e3} is our basis, then ¢;§;; hasii
exactly twice so itequals e;8;; + €,8,; + e363;. The only term that does not vanish is the term where
i=j by the definition of the delta, and therefore eidij = 5]-. If an index appears more than twice, the
convention is not used, but it is surprisingly useful to do it this way.



Examples (I will not prove these since they are easy but tedious to check):

e;.ej = 0;;

- a.b =6;ja;b;

-6 X = &kl

- axb=abjege

- (a x b); = a;jbyg;ji (Note: this means the component of a x b in the direction of the basis
vector i)

- a.(b x c) = a;bjcyg;jy

- 6; =3

- EijkEpgr = Oip0iqOkr + 6iq0jrOkp + 8ir0jpOkq — 8ipGjrOkq — 8iqOjpOkr — 6irGjqOkp

- EijkEpak = OipBiq — BigOp

- EijrEpjie = 20ip

Eijk€ijk = 6

We will use this to show that ax(bxc)=b(a.c)-c(a.b). Consider the component of ax(bxc) in the
direction of a basis vector such as i, then (using the identites above and doing algebra) we get

[a x (b x )i = eyjic[a;(b x ] = eije|aibpcqpar] = (8inq — Sig8jn)aibpeq]
Note that j looks like it appears 3 times but it only appears 2 times in each term when we expand it out
soitis fine.
= 8;p0jqajbycq — 6iq0jpa;b,cq = ajb;c; — ajbjc; = (a.c)b; — (a.b)c; so done. This is much more
compactthen if we were to expand the vectors out, here is an image to show what that looked like:

Lecture 7:

Another example of using the summation convention to prove an identity:

(axb).(bxc)=(axb)i(b xc) = &abreipgbpcq = (8;pSkq — 8jqOkp)aibrbycy
= ajbybjcy — ajbybyc; = (a.b)(b.c) — (a.c)(b.b)

Now suppose we have a unit sphere with points a, b and ¢ on the sphere. Thena.b = cos(6(a, b))
where §(a, b) means the arc length from a to b.

IZTxEl and % are unit vectors perpendicular to the planes through AOB and AOC

respectively, so the cosine of the angle between them equals the cosine of the angle between the arcs

Now note that

AB and AC. However, |a x b| = |a||b| sin(AOB) = sin(6(a, b)). However, the cosine between two unit
(axb).(axc) N
sin(8(a,b))sin(8(a,c))

vectors is the dot product, so if ais the angle between the arcs then cos(a) =



la|?(b.c)—(a.c)(b.a)
sin(8(a,b))sin(8(a,c))
cos(8(b,c))—cos(8(a,b)) cos(8(b,c))
sin(8(a,b))sin(8(a,c)) ’

by the above identity. However, a.b = cos(8(a, b)) and similarly for a.c and b.c so

cos(a) =

Definition: g;;; , if the indices range from 1 to n where n is the number of indices is 0 if any 2 are the
same, 1ifitis an even permutation and -1 if it is an odd permutation. See Lecture 13 for what this
means and why it is well defined. This is the generalized epsilon.

a; by

) is ;ja;b;. In fact, higher order determinants use
a, b,

Example: The determinant of a 2x2 matrix (
the same general formula.

Lecture 8:

Definition (Inner product): This is basically the dot product. (a,b) is an inner product if it satisfies:

- (a,a) is non-negative and always real

- (a,b) is always the complex conjugate of (b,a) (Note that this means that in the real number
case we have symmetry)

- (zew+ W) =c(z,w) +(z,w)

- (ew+cw,z) =cw,z) +c'(W', z)

Definition: A basis is orthonormalif e;. e; = §;; —ie each basis vector has magnitude 1 and is
perpendicular to the rest.

Defintion: Areal vector space has multiplication only by real numbers. A complex vector space has
multiplication by real or complex numbers. The real vector space defined by C" actually has
dimension 2n because we need the basis (1,0,0...), (i,0,0,...), (0,1,0,...), (0,i,0,...), etc. We will prove
soon that dimension is actually unique.

Definition: A subspace is a subset of a vector space that is also a vector space. For a space to be a
subspace, we need that for any vectors v and w their span (ie all linear combinations) is in the
subspace. Vitself and {0} are trivial subspaces of any vector space V.

More on linearly independent vectors:

Example: (3, -1, 2), (1, 0, 1) and (5, -2, 3) are not linearly independent because
(5, -2, 3)=2(3, -1, 2)-(1, 0, 1). However the set (3,0,0), (4,1,3) and (2,0,1) are linearly independent. This

3 4 2
canbechecked: |0 1 0] = 3 sothevectors spanthree dimensions (geometrically). Note that
0 3 1

vectors being pairwise linearly independent is not enough. However (geometrically), mutually
perpendicular vectors in real vector spaces are linearly independent.

Proof: Let (vq, v, ..., v,) be mutually perpendicular and non-zero. Then (v}, X a;v;) = ¥ a; (v}, v;) (but

2
unless i=j, the terms are 0), sowe get = Y. a; (v;,v;) = X q; |v;|”, soif the sumis 0 all a’s must be 0
since they are being multiplied by positive things, so the v’s satisfy the definition of linearly
independent.

Defintion: The dimension of a vector space is the number of basis vectors that span the vector space.
However, we need to show that this is the same regardless of which basis we use.



Proof: (Credit: Google images — Image below shows proof)

Claim: If { ¢/}, v, 3, ..., ¢, } is linearly independent in V'
and { i, Wa, W, ..., Wy | spans V,
then n < m.

Strategy: Replace the vectors of our spanning set with those of our linearly independent set, one by one.

Proof: {7, i;, @3, ..., 7, } is linearly independent in V.

7] = a1 W) + Wy + azWy + - - + Gy Wiy

without loss of generality, o) # 0; replace w; with 7] to get a new spanning set.

{ @y, Wa, Wa, ..., Wy } spans V.

Therefore, suppose we have a basis with X vectors and another one with Y vectors for the same vector
space, and suppose X<Y (since if Y<X we could apply similar logic without loss of generality): Then the
Y basis is linearly independent and the X basis spans the vector space, but X<Y so this contradicts the
theorem above.

Of course, if we have a set that spans a vector space we can remove redundant ones to get a basis.
Also, if we have a set that does not span a vector space, we can add new ones until it does then
remove redundant ones.

Lecture 9:

Consider a map from a bunch of numbers to a bunch of other numbers. Sort of like this image below
from google images where each arrow has a weight and the output is the weighted sum.

ANV b\

v

This is called a linear map, and you can see that this is equivelent to multiplying the left hand side as a
vector on the left by a matrix with entries equal to the weights of the arrows in the corresponding
positions. In fact, matrices of a fixed size are elements of a vector space since they satisfy all the
elements of a vector space. You can think of a matrix as a map from one vector space to anoyher
vector space.

Definition: The image of a matrix is the set of vectors that get mapped to. The rank of a matrix is the
dimension of the image. The kernel of a matrix is the set of vectors in the domain that map to zero.
The nullity or null space of a matrix is the dimension of the kernel. Kernels and images are closed



under adding or subtracting them and stuff and contain the origin so they do form vector spaces - this
is important to know.

Theorem (Rank-Nullity theorem): If we have an nxn matrix, then its rank plus its nullity equals n.

Proof: This is a direct consequence of the isomorphism theorem which we learn in the Groups course.
This is because if we consider our matrix to be a homomorphism between our vector spaces as
groups under addition, then the vector space we are mapping to is isomorphic to the direct product of
the kernel and the image, and therefore the sum of the dimensions of the kernel and the image is n.

Note: This is obvious if you consider volume, but a square matrix maps to the entire vector space if
and only if its determinant is non-zero. Also, since such a matrix is invertible we can use its inverse to
find the pre-image of any vector.

Note: A matrix can be interpreted as a list of vectors where each row represents a vector, or where
each column represents a vector. le

And similarly for rows.

Note that the span of the columns of a matrix is the column space or span of a matrix. This is also
equivelent to the image of the matrix, since the image is exactly linear combinations of the columns
with coefficients equal to the entries we are multiplying the matrix by.

Lecture 10:

We note that multiplying a matrix by a column vector like (0,0,...,0,1,0,...,0,0) essentially extracts a
column from the matrix.

Ry.x

R,.
We note also that Mx = 2_ x . This is easy to check, where the R’s are the rows of M.
Ry.x

Therefore, it follows that Mx = 0 when x is a vector perpendicular to all rows of the matrix.

3 1 5
Example: The rank of <—1 0 —2) is 2 because
2 1 3

- ItisnotO0since O is clearly not the image
- Itisnot 1 since all columns do not lie on the same line
- Itisnot 3 since the determinantis O.

Therefore, by rank nullity, its kernel must be a line.

Definition: In 2D, Rot(0) is a matrix representing a rotation by an angle 8 anticlockwise. In fact, by
cos (8) —sin (0)
sin () cos (0)
level. Similarly, we define Ref (8) as the matrix representing a reflection about the line which is an

checking where (0,1) and (1,0) go we see that Rot(6) = ( ) This is known from A



angle g anticlockwise from (1, 0). If you check carefully where basis vectors go, we see that Rot(6) =

(cos () sin(0)

sin (6) —cos (9)>. We can try multiplying them together in different ways:

- Rot(8)Rot(¢p) = Rot(6 + ¢). | think this is obvious if you think about it.
__(cos(8) sin(0) \(cos(¢) sin(¢)\ (cos(0—¢) —sin(0—¢)
- Ref(6)Ref(¢) = (sin (0) —cos (9)) (sin (p) —cos (qb)) N (sin (0—¢) cos(6—¢) )
Rot (08 — ¢) where | have used trigonometric addition formulae which are known from A level.
__(cos(8) sin(0) \[(cos (¢p) —sin(¢)\ (cos(8—¢) sin(6—¢)
- Ref(6)Rot($) = (sin (0) —cos (9)) (sin () cos () ) B (sin (0 —¢) —cos (06— d)))

Ref(6 — ¢)
__(cos (8) —sin(0))(cos(¢) sin(¢p)\ (cos(@+¢p) sin(6+¢)
- Rot(6)Ref($) = (sin (6) cos (6) ) ( ) (sin (6 +¢) —cos(6+ d)))

Ref(0 + ¢).

In 3 dimensions, a rotation of an angle 8 anticlockwise about a unit vector n is given by a formula

sin (¢) —cos (¢)

which we will derive next lecture. The formula says that a vector x is mapped to
cos(8) x + (1 — cos(8))(n.x)n + (sin(6))(n x x).

A matrix representing a reflection around a space A is given by I — 24AA” where A consists of columns
of normalized vectors that are perpendicular and span A. The reason is that the formula for an
orthogonal projection onto A is known to be I — AAT as | show shortly, and it should make sense that
an orthogonal projection moves a vector halfway from its original position to its reflected position.

We are in R™ (n dimensional vector space of reals) and for m<n there is an m-dimensional plane
centered at the origin, then we can rotate the space around so that the first m basis vectors are in our
plane, then consider where the rest of the basis vectors were before we did the rotation: Intuitively, we
are considering a basis for vectors perpendicular to this plane. If S is a n*(n-m) matrix where each
column of s is one of these vectors, we want to show that I — SST projects any vector onto the m-
dimensional plane. To do this, we just need to show three things:

1. Avector when this linear transformation is applied to it moves orthogonally to the direction of
the plane
2. Anyvector ends up on the plane after the transformation

Consideravectorv,then (I — SST)v =Iv —SSTv =v —SS5Tv
Condition 1: Orthogonality

The vector moves by SSTv. Therefore we want to show that (SSTv).u = 0 if uis on the plane. This is
the same as (SSTv)Tu = vTSSTu. But we know STu is 0 since we are assuming u is on the plane (so all
columns of S as a dot product with v return 0 so the result follows), so the whole thing becomes 0. So
done.

Condition 2: A vector ends up on the plane after the transformation

We want to show (I — SST)v ends up on the plane. Since the plane is defined by STu is 0 if u is on the
plane, we want to show that ST (I — SST)v = 0. Thisis equalto STv — STSSTv = (I — STS)STw.



Now what does STS equal? It will be an (n-m)x(n-m) matrix where the i,j entry is equal to s;. sj. Since
the s’s are orthogonal unit vectors, this will be 1 when i=j and 0 otherwise, so we get the identity
matrix. Therefore ] — STS = 0. So done.

Now suppose B is a matrix where the columns are vectors that form an orthonormal basis of the plane
(Essentially this means what you would expect: Where the basis vectors on the plane were before the
rotation). Then I — BB is the projection matrix onto the space perpendicular to the plane, since it is
essentially the same idea with S and B being renamed to eachother, as they are both matricies with
perpendicular columns within them and between them. Now a vector vdecomposes into vectors v,
and v,, where v, is the component of v in the direction of the plane, and v, is the component of v
perpendicular to the plane. So (I — BBT)v = vgand (I — SST)v = v, so

(I-BBDv+ (I-SSTv=v,+v, =v.S0(2] — BBT — §5T)v = v. Since this is true for all v, we
must have that] = 2] — BBT — SST sol = BBT + SST. What | have proven is thatif Band S are
matricies whose columns together form a basis for a vector space with all vectors perpendicular to
eachotherthen I = BBT + SST. Alternatively, | have shown that if B forms a basis for the plane with all
vectors in B perpendicular to eachother, then BBT gives a projection onto the plane.

Lecture 11:

Now we will derive the rotation formula as promised. We can write x = x,, + x, where x,, is the
component of x parallel to n and x,, is the component of x perpendicular to n. Since |[n|=1, we know
that x, = |x| cos(nOx) n = (n.x)n. Also x,, = x — x,,. We know that when x is rotated about n, the x,
component will not change at all since anything parallel to n does not move when rotated about n.
Now we must work out what happens to x,,. Itis rotated by 6 about n, so it must have a part equal to
cos(0) x,, and a part equal to sin(6) y where y is an anticlockwise rotation of x about n. Now consider
nxx: By the right (left? I’'m not sure it doesn’t matter) hand rule, this is perpendicular to n and a 90
degree rotation anticlockwise from x, and its magnitude is exactly |n||x|sin(nOx) which is |x| since the
other terms in the product are 1. This means nxx is exactly the y vector which we need. Therefore, x is
mapped to x,, + x, cos(0) + sin(f) (n x x) = (n.x)n + (x — (n.x)n) cos(8) + sin (8)(n x x).
Rearranging gives the desitred formula.

In fact, it turns out that any rotation in 3 dimensions that moves the 3 basis vectors to any other
orthonormal right handed set can be written as the product of 3 rotations about the axes. Here is why:

Here is how: We rotate about the x axis first to move the z axis vector to have the correct final height.
We then rotate about the original z axis to make this vector be in the correct final position. The x and y
vectors may be wrong, but we can pre-rotate them about the z axis before doing these other 2
rotations such that they end up in the correct place.

Definition: Suppose a and b are perpendicular and |a|=|b|=1. Then a shear is a matrix which sends x to
x+Aa(x.b). Basically, this leaves a unchanged and moves b by Aa units.

This image from google below shows an example of a shear where we leave the x axis unchanged and
slightly shift the y axis over.



1T 1 ZY 1T 1 1 ZY

Also, here is an example of the principle of a matrix being a linear map between vector spaces:

Consider a map from the vector space of 2x2 matrices to 3x1 vectors (ie, R3). Suppose the map
a

a+b
b
always sends (Ccl d) - < C > Then we have to write our matrix as a column vector: c | Then the
d d
a+b
matrix that sends this to c is (This can be easily checked, since a map is defined in the matrix
d

1 1 0 0
multiplicationsense) (0 0 1 0.
0 0 0 1

An important idea is that this map is really matrix multiplication is the same as composing maps. This
is because if A: V->W and B: W->S then AB is the map (A°B) from V to S, where V, W and S are vector
spaces. This works like this due to matrix multiplication being associative: (AB)X=A(BX) if X is a vector
in our starting vector space V.

Lecture 12:

Matrix multiplication can be interpreted by the summation convention as follows: if L=MN then
Lix = M;;jNj;. Also, we can see that L;; is the dot product of the i’th row of M with the k’th column of N.
In fact, associativity of multiplication follows directly from this: A;;(B;xCy;) = (A;;Bjk) Cyi-

Note that a left inverse of a square matrix is the same as a right inverse with the same proof as at the
beginning of groups. We were able to see that this was the case in the Level 6 matrix video.

Some obvious properties: An inverse of a rotation is a rotation in minus the angle. Reflections are self
inverse. An inverse of a shear is a shear the opposite way.

Definition: The hermitian conjugate of a matrix is the complex conjugate of its transpose. This is
denoted M.

Definition: A matrix is antisymmetric if M7 = —M. This actually constrains the matrix a lot — All
diagonal entries in an antisymmetric matrix have to be 0.

Definition: The trace of a square matrix is the sum of the elements along the diagonal. By the
summation convention we can write Tr(M) = M;;. By considering the characteristic equation we can
see that the trace equals the sum of the eigenvalues.

Proposition: Tr(MN) = Tr(NM). Proof: (MN);; = M;;Ny; = Ny;M;, = (NM)y, (summation convention
used).

Proposition: Any matrix with real entries is a sum of antisymmetric parts.

Proof: Set S = %(M + M), A= %(M — MT). Itis easy to see that S is symmetric, A is antisymmetric,
and S+A=M.



S can be further decomposed into T := S — %Tr(S)I and %Tr(S)I. Note that the trace of Tis 0 by how

we constructed T.

Therefore, M has been decomposed into a symmetric traceless matrix, an antisymmetric matrix and a
multiple of the identity matrix.

Lecture 13:

We have seen in Level 6 in the section on symmetric matrices a dot product argument for why a matrix
U is orthogonalif and only if UUT = UTU = I, ie the columns and rows of U are orthonormal.
Orthogonal matrices are defined to be only real-valued matrices with this property.

Also, (Ux).(Uy) = x.y if Uis orthogonal: This is because if U is orthogonal it is essentially a rotation,
meaning the lengths and angles — and thus the dot product — are unchanged.

Definition: A complex n*n matrix is unitary if its inverse equals its hermitian conjugate. Thisis a
generalization of orthogonal matrices. If U is unitary, we have, using the complex version of the dot
product, that (Uz). (Uw) = (U2)T(Uw) = zTUTUwW = zTw = z.w.

. 1\ _ (cos (9)> 0\ _ (—sin (9)) .
Example: If U (0) = (sin(@) ,thenU (1) =+ cos(0) /)’ Basically, angles and lengths must be

preserved for unitary matrices, but not orientation.

Example: The determinant of a 3*3 matrix M can be written in index notation as &;j; My; M, jMs,,. For
higher size matrices, the determinant can indeed be written as & My;M, M3y ... My, using the
generalized epsilon. The fact that the three dimensional case of the determinant is the volume was
proven in Level 6, and the higher dimensional case uses the same proof provided we have well
defined-ness of the sign of the permutation as a theorem. We will prove this later in the lecture.

It is easy to see that matrix columns are all linearly independent if and only if the determinant is non-
zero.

Proof: If the determinant is zero, then everything is confined to a lower dimension by the volume
property, and therefore they cannot be spanned by n linearly independent vectors. Conversely, if the
matrix has columns all linearly independent then it has full rank (so it is surjective) and thus trivial
kernel, and therefore it is injective (Since if two vectors mapped to the same thing under the matrix
then the difference would be in the kernel and thus would be 0). Therefore, if the matrix has linearly
independent columns, itis a bijection, and thus is invertible, and thus has non-zero determinant,
since if it had zero determinant it would not be invertible as that would involve dividing by 0 which is a
contradiction.

Notation for permutations:

1 2 3 4 5 6
5 6 3 1 4 2
the top row get mapped to. Then let’s trace it:

Consider the permutation ( ) where the bottom row shows what the elements of

1 maps to 5 which maps to 4 which maps to 1 so we’re back to where we started.
2 maps to 6 which maps to 2 so we’re back to where we started.

3 maps to itself. Now we have considered all the elements.



1 2 3 4 5 6
5 6 3 1 4 2
described above with the fixed points (like 3) omitted.

So, a convention is we can write ( ) as(154)(26),ieasalistof the cycles

Note that we can get the cycle (1 5 4) by swapping 4 with 5 then swapping 5 with 1. In general, we can
getacycle (a, a, ...a,) by swapping a,, with a,,_, then a,,_; with a,,_,, and so on until we swap a,
with a,. You can try to trace in your head where anything would get mapped to in order to convince
yourself of this.

Definition: The sign of a permutation is 1 if it is the product of an even number of swaps and -1 ifitis
the product of an odd humber of swaps. This is equal to the generalized epsilon. We need to show that
this is well defined: We cannot get to a permutation in an even number of swaps and get to the same
permutation in an odd number of swaps.

Proof: The idea is a formula exists based on a permutation which changes sign every time we swap
two elements, meaning the parity (ie odd-or-even-ness) of how many swaps we did is fixed. We can
define the Vandermonde polynomial as P(xq, X3, ... Xp) = [l1<i<j<n(x; — x;). So, for example,

P(1,2,3) =(1-2)(1 —3)(2 —3) = —2. Now consider that happens when we swap two elements:
P(x1, X3, e, Xy, o) Xg, .o, Xp) has a certain value, and P(xq, X3, ..., Xg, o, Xy, ..., Xp) has all terms in the
product not involving x,- and x; unchanged. Lets look at what the product of terms involving r and s are
in the first and second polynomial.

FIRST ONE:
(er = 20 = %) oo (0 = X2y ) Gy — 27 e (s = %) o (o — 2, ) (5 = 20) (65 = %) oo (0 — 270 ) (s — %) oo (O = X521) (Ksg — X5) woe (2 — X5)
Where | have been careful to not include the x5 — x,. term twice.
SECOND ONE:
(s = x1) (K = %) v (s = Xr_1) (g = Xe) v (st = %) O = X6) (K1 = Xe) oo G = X (& = X)Xy = X2) s (5 = Xr2) (6 = Xppn) o (6 = Xgm1) (41 = %) o (K = %1)
Now let’s cancel terms that are shared to try to see what the ratio is:

g1 =2x7) o (Xs=%7) (X5 =27 41) . (Xs—X5_1)

(r41=%5) o (5—1=%5) (or—2x5) Ocr =274 1) (X —X5-1) -Let's write this as follows:

The ratio is

o1 =2) (X1 =24) s =27) (X5 =X g 1) . (Xs—X5—1) — (—1)1+2(s-1-1) — _ iecs .
Oor=2rg1) (X —2xs5-1) (Xr—%5) (Xpg1—%s) . (X5—1—X5) ( 1) 1. Soiffisa pel’mUtatIOI’l of

P(f(D).f(2).f(3),..f ()
P(1,2,3,.,n—1,n)
sign given above. Therefore this is well defined, so done.

(1,2, 3, ...,n), we can define sign(f) as , and this is the same as the definition of the

Lecture 14:

Definition: A function F of multiple vectors is multilinear if when you fix all but one vectors and treat F
as a function of the remaining vector, F(aV + bW) = aF (V) + bF (W) for all a,b,V,W. An example of
this is the determinant as a function of the columns of a matrix - We demonstrated why this is the
case in the Level 6 matrix video. Multilinear means the same thing even if these are not vectors.
Bilinear means multilinear in the case there are two arguments to the function.

F is totally antisymmetric if swapping two arguments changes the sign (ie multiplies it by -1). We are
essentially writing names for the determinant properties | showed in that video.



Alternative proof that linear dependence implies zero determinant which is more algebraic. We are
doing this because one of the aims of this course is to have you thinking about the connection
between the algebraic and geometric side of things:

If the columns are linearly dependent, some column is a linear combination of the others. So we can
write C, = ¥, C;A;. Since subtracting one column from another does not change the determinant, we
can subtract A; times all the non-p columns from the p’th column to get the p’th column to be 0. So
the determinantis 0.

Proposition: For an n*n matrix M, det(aM) = a™det (M). The reason is because if we multiply each of
the columns by a, we multiply the determinant of M by a n times, and thus by a™.

Proposition: The detrminant of a matrix equals the determinant of its transpose. This is because if
i,j,k,...Lis a permutation, we can take det (M) = g;jy, | M1;M; M5y ... My;. Then

det (MT) = Eijk..iMiy Mjz;Myes ... M}, by definition of the transpose. Now we can apply the inverse of the
permutation i,j,k,...L to all the matrix indices in &;j, My Mj; My ... M}, since we will sum over the same
terms. that is just reordering the terms, then this will give us &;7jryr 1Mq;/ My Mgy ... My The sign of
the inverse permutation that maps 1, 2, 3, ... ,ntoi’, j’, k), ... U is the same as the sign of the starting
permutation which is why | can prime everything in the epsilon symbol. But summing overi’, j, k, ..., U
gives the same result as summing over i,j,k, ..., l. So done.

Remark: Now everything we did for columns of matrices hold equally for rows. It follows that it is the
case that the rows of a square matrix are linearly independent if and only if the columns are by
considering the determinant. And adding a multiple of a row of a matrix to another row does not
change the determinant.

Proposition: Det(MN)=Det(M)Det(N). This is obvious by the volume property, but next lecture we will
give an algebraic proof.

Geometrically, if M is orthogonal, its determinantis 1 or -1. Also, since its inverse equals its transpose,
the determinant of its transpose must equal the reciprocal of the determinant, so the determinant
equals its own reciprocal so it must be -1 or 1.

If M is unitary, then its inverse is the complex conjugate of the transpose of M, so the determinant is
the complex conjugate of the determinant of M. Multiplying this by the determinant of M must give 1
since M times its hermitian cnojugate is the identity, so det(M) has modulus 1.

Lecture 15:

Note that swapping columns of a matrix n times multiplies the determinant by (—1)".

Det(MN) = )" &(0)(MN) 11 (MN) 5202 (MN) 5533 - (MN) gy

OESH
n

= Z (o) Z Mg (1), Nk, 1Mo (2)1, Ny 2 M5 (3) 13 Nies 3 - Mo ()i, Nicyn =
O'ESn kl,kz,kg...knzl

n

Z £(0)Ny,1Nk,2Ni,3 - Ny n z Mg ()i, M)k, Mo 3)ks - Mam)ky,
kl,kz,k3...kn=1 O'Esn



But the only terms that survive here are those where kq, k,, k5 ... k,, are distinct, since otherwise we
would be finding the determinant of a matrix with two equal columns. Now we have

Z £(0)Ny(1)1Np(2)2Np(3)3 - Np(myn Z Ms1)p)Mo2)p(2Mo(3)p(3) -+ Mamypn)

PESH OESy

(o)
= det(N) @ Z 8(p)M0(1)1M0(2)2M0(3)3 "'Ma(n)n = det(N) det(M).

OESH

Now | will show that we can find the determinant by expanding by a row or column and taking sub-
determinants.

Specifically, if A;; is the determinant of M with i and j removed multiplied by (—=1)¥/, then M;;A;; with
the summation convention oniand j fixed is equal to det(M).

Lemma: Suppose we have a matrix where if we remove row i and column j we get the matrix A, the ij
entry of this matrix is 1, and all other entries in the i’th row and j’th column are O, then its determinant
is equal to (—1)"*/det (4) and thus A;;.

Proof: We can do i-1 row swaps and j-1 column swaps to turn this into a matrix with 1 in the top left
and A after the bottom left corner of the 1. Then by a simple volume argument the determinant of this
is equal to the determinant of A. (ie, in 3d, a parallelopiped if we keep the x axis fixed and move the y
and z axis parallel to the x axis has the same volume scale factor equal to the area scale factor of the
parallelogram scale factor of the y-z parallelogram). Then we have i+j-2 sign changes, and thus i+j sign
changes, so this completes the proof of the lemma.

Theorem: Det(M) = M;;A;; with j fixed

Proof:

Notation: [C;, C5, ... C,,] will denote the determinant of the matrix with it’s columns as C;, C5, ... C,,.
Det(M) = [Cy,Cy, ..., Cj, ..., Cp]

Note that by matrix multiplication, C; = M;;e; with the summation convention. Therefore we can write

Det(M) = [Cl, Cy, ..., Mjje;, ...,Cn] = M;;[Cy, Cy, ..., €, ..., Cy] since the determinant s linear in each
column from the level 6 video. [Cy, C, ..., €}, ..., Cp] = A;; since we can go and subtract e; from each
column until everything else in the i’th row is 0. So done.

Lecture 16:

Definition: The adjugate of a matrix M is M~1det (M). If Mis not invertible, then Adj(M) is the
transpose of the cofactor matrix, ie the thing you get when finding the inverse before dividing by the
determinant. Note that we used this adjuagate matrix in the Cayley Hamilton Theorem proof.

1 x 1
Example: Consider the matrix M := <1 1 x). Lets try to compute Det(M).
x 1 1

Note that adding a multiple of 1 row to another does nothing to the determinant, so we can subtract
1 X 1

the first row from the second and try to compute the determinantof {0 1—x x —1 ). Wecanalso
X 1 1



1 X 1
subtract x times the first row from the third to get (0 1—-x x-— 1>. We have now reduced the
0 1—-x% 1—x
1—x x-—1 R . .
1—x2 1- x) whichis x 3x + 2. Thisis useful because if you try to
“naively” compute the determinant of, say, a 5*5 matrix you could have up to 120 terms, and this just

gets much worse for larger matrices.

problem to finding det(

We have seen from A level that we can use matrices to solve systems of linear equations.

Consider a system of n linear equations for unknowns x4, x5, X3, ... X,. Now we rewrite the system in
vector-matrix form as Ax = b. If A has non-zero determinant we know what to do and there will be a
unique solution x = A~1b. Therefore we will talk about what happens in the other case.

Case 1: bis notin the image of A in which case there are no solutions.

Case 2: bisin the image of A in which we have infinitely many solutions: In this case we take a
particular solution and add any element in the kernel of A. If u is a solutionto Ax = b, thenxisa
solution if and only if x-u is in the kernel of A, since we need A(x —u) = 0.

1 x 1 1
Example: Let x and y be real numbers, and we want to solve Ax+B with A = (1 1 x),b = (y),
x 1 1 1

x#1,x#-2.

Now we can compute A™1: A7 = —
x°—3x+2

1-x 1-x x?>-1

(xz -1 1-x 1—x ) Now we can find by getting rid
1-x x*-1 1-x

of certain common factors that our solution is

. -1 -1 x+1\/1 . xX—y
x24+x-2 <x+ 1 -1 -1 y> :x2+x—2< xX—y :
-1 x+1 -1 1 xy+y—2

If x=1, then the kernel of A has dimension 2, so there is a plane of solutions if and only if y=1 (since y

must be in the image of a which is multiples of (1,1,1)), otherwise there are none.

If x=-2, then the kernel of A has dimension 1, so there is a line of solutions if b is in the image of A. This
turns out to be the case exactly when y=-2 — | won’t go through this too carefully but essentially this is

1 -2 1 a—1

because < 1 1 —2) <a — 1) must be the form in order to get 1 in the first and third entry (we
-2 1 1 a

need the same first and second entries, and we need it to be such that they are both 1), and in any

case we end up with -2 in the middle.

I notice that above the dimension of the kernel equals the multiplicity of the root in the determinant. |
wonder if something more general along these lines can be said?

Lecture 17:

Later this lecture we will give a more efficient method of solving systems of linear equations since in
practice inverting a matrix is very difficult and slow for anything larger than 3*3.

Consider the matrix equation Au = 0. This equation is saying R;.u = R,.u = R3.u = 0, sowe are
looking at the intersection of 3 planes. But we knew this from A level, as well as the idea that if the



right hand side is non-zero there may be no solutions, in which case the planes either form a sheaf or
have two or all three parallel, and in higher dimensions I’m sure there are way more possible cases.
The solution if the right hand side is 0 is by definition equal to the kernel of A, which is just 0 if and only
if Ais invertible.

Recall from A level (in deriving the eigenvalue stuff): Suppose there exists a non-zero vector v such
that Av = 0, then since both A0 = Av = 0, this means that A is a many-to-one map so it is not
invertible, so this implies that A has determinant 0. Conversely, if A is not invertible, then Av=0 has a
non-zero solution, because A must have a kernel. We did not need this part for A level since we were
only ever given matrices where we could actually find 3 linearly independent eigenvectors, and this is
not always the case, but the fact that when this is the case there is an eigenvector is obvious and does
not need proof. And now we know there is always an eigenvector. We will need to work in the complex
numbers since a real matrix can have non-real eigenvalues from the characteristic equation, and at A
level cases like this were avoided, but they can come up.

Note that if we go back to the intersection of the 3 planes idea, the dimension of the intersection of
the three planes equals the dimension of the solution space which equals the dimension of the
kernel. But then the number of linearly independent normals to these planes is 3 minus this, which
equals the rank. This is hinting is a more general theorem which says that the dimension of the row
space of any matrix equals the dimension of the column space. The lecturer did not do this butitis
fundamental to linear algebra so | will.

Here is the proof from wikipedia, noting that orthogonal means perpendicular.

Let 4 be an m * n matrix with entries in the real numbers whose row rank is 7. Therefore, the dimension of the row space of 4 is 7.
Let X|, X, ..., X, be a basis of the row space of 4. We claim that the vectors AX,, AX,, ..., AX, are linearly independent. To see why,
consider a linear homogeneous relation involving these vectors with scalar coefficients ¢y, ¢, ..., ¢;:

0=cAx; + 2 Axs + ++ + ¢ A%, = Alarx) + X + - + &%, ) = Av,

where Vv =c X + ¢,X, + -+ + ¢,X,. We make two observations: (a) v is a linear combination of vectors in the row space of 4, which
implies that v belongs to the row space of 4, and (b) since Av = 0, the vector V is orthogonal to every row vector of 4 and, hence, is
orthogonal to every vector in the row space of 4. The facts (a) and (b) together imply that v is orthogonal to itself, which proves that
v = 0 or, by the definition of v,

c1Xy + X + - Fox, = 0.

But recall that the X; were chosen as a basis of the row space of 4 and so are linearly independent. This implies that
c)=cy = =c,=0.lItfollows that 4x, 4X,, ..., AX, are linearly independent.

Every 4X; is in the column space of 4. So, Axl, AX,, ..., AX, is a set of r linearly independent vectors in the column space of 4 and,
hence, the dimension of the column space of 4 (i.e., the column rank of 4) must be at least as big as 7. This proves that row rank of 4
is no larger than the column rank of 4. Now apply this result to the transpose of 4 to get the reverse inequality and conclude as in the
previous proof.

Image: The proof from
wikipedia that row rank = column rank for all matrices.

Now as promised | will show the easier method of finding the solutions to the system of equations.
This method is called Gaussian elimination.

Consider a system of m equations with n unknowns, with m and n possibly different. Then we look for
one coefficient that is non-zero (if this does not exist then this is not very interesting), and move it to
the top left corner of the system.

Take the first equation of the form A;x; + A,x; + Asx3 + -+ Arx4 = b; with the first term non-zero,
then subtract multiples of it from the rest of the equations such that all their first coefficients are 0.

Now we have m-1 equations with at most n-1 non-vanishing unknowns, and we repeat the same
procedure again. After repeatedly doing this, we have 1 equation with n unknowns, another one with
n-1 unknowns, another one with n-2 and so on. If we have more unknowns than equations, then we



will get incomplete information since every equation may have many unknowns, so there will be many
solutions. If we have more equations than unknowns, or we get to a point that we cannot find another
non-zero element, we will end up with a lot of 0=(linear combination of the b’s) equations at the end. If
these linear combinations are ever not 0, we have no solutions, but otherwise we can work backwards
from the n’th equation to find all the unknowns.

Now we can interpret this another way: We are taking a matrix and by only interchanging rows and
columns and adding multiples of rows to other rows we get it into row echelon form or upper
triangular form, meaning every element below the main diagonal is zero. If m=n, then one can see that
the determinant of the matrix in question is (possibly with a sign change) equal to the product of these
diagonal entries.

In the coming lectures, we will explore more properties of Eigenvalues and Eigenvectors. We will only
do this for real and complex matrices — for general linear maps between vector spaces that is beyond
the scope of this course.

For example, now we know that the fundamental theorem of algebra holds, and this means that every
matrix actually has Eigenvalues since the characteristic equation has (possibly complex) roots. At A
level we knew this for real 3x3 and general 2x2 matrices — which was all we needed - but now we know
it fully.

Definition: The multiplicity of a root k of a polynomial is the number of times you can factor out x-k.
The multiplicity of an eigenvalue k is the multiplicity of k in the characteristic equation of the matrix.

Lecture 18:
Definition: A matrix is diagonalizable if it can be written as M = PDP ™1 for a diagonal matrix D.

Definition: The algebraic multiplicity of an eigenvalue A is the multiplicity of A as the root of the
characteristic polynomial.

Definition: The geometric multiplicity of an eigenvalue A is the dimension of the space of vectors v
such that Mv=Av. This is called the eigenspace.

Proposition: By the fundamental theorem of algebra there are exactly n eigenvalues for an n*n matrix if
we count multiple times for algebraic multiplicity.

Proposition: The determinant is the product of the eigenvalues with algebraic multiplicity as their
power.

Intuition: If the matrix is really just taking a basis for the vector space and scaling it by eigenvalues,
then the volume scale factor is clearly the product of those. But this only works for “nice” matrices.

Proof: Det(M)=Det(M-0l) which is the characteristic polynomial evaluated at 0. But this is just the
constant term of the characteristic polynomial, which we know is the product of the roots (possibly
with a minus sign — we will address this) which is the product of the eigenvalues.

About the sign change: The constant term of the characteristic polynomialis (—1)™A" so we can
multiply the whole polynomial by (—1)" to get it to have 1 as the leading term, and then the sign
change of the constant termis (—1)", but the constant term is also (—1)" times the product of the
roots, so everything aligns correctly.



Sine polynomials with real coefficeints have roots that are real or come in conjugate pairs, this must
hold for eigenvalues of real matrices.

Proposition: The trace of a matrix as defined as the sum of elements along the diagonal is actually the
same as the sum of the eigenvalues.

Proof: Set the equation to Det(Al — M) so that 1 is the leading term In the polynomial. Then the sum of
the roots is minus the second leading term. But we only get a second leading term from the
determinant term given by A, A, ... Ap, Where A = Al — M. But A1 4,5 ... Apy = [1721(2 — M;), which
has minus the sum of the diagonal entries as its second leading terms. All other products in the
determinant have to have no more than n-2 copies of 1 so the 7”1 term is fixed at this.

Example, since in A level we always had real eigenvalues, here is a case where we don’t:

Consider ((1) _01) Then the characteristic equation is 124+ 1=0,sothe eigenvalues are %i. Lets
compute the eigenvectors associated with these. We want to solve (A-li)v=0: (_i _1) (x) = (0)
1 —i/\Y 0

Therefore we have that -ix-y=0 and the other equation is equivalent. So the eigenvectors for the

eigenvalue i are all multiples of (_11) By the same calculation, for the eigenvalue -i the eigenvectors

are all multiples of C)

Example: The eigenvalues of (é D are just 1 with algebraic multiplicity 2. But the geometric

A~ (0 1\ XN _ /0y, o .
multiplicity is not 2 If we solve (A-1)v=0: (0 O) (y) = (0) if and only if y=0, which means that the

geometric multiplicity is 1 since the eigenvector is just the x axis.

Also, we cannot diagonalize (é 1), since the eigenvector matrix is just (é (1)) which is |, but for any

P, PIP~! =] and not ((1) D so this is a contradiction.

It turns out that a matrix is diagonalizable if and only if the geometric multiplicities are all equal to the
algebraic multiplicities, and of course we will prove this.

Proposition: Eigenspaces are actually vector spaces and therefore geometric multiplicity is well
defined.

Proof: The eigenspace is exactly the kernel of a matrix M — AI. But kernels are subspaces since they
are closed under additions and inverses and stuff (cf groups where we see that kernels are
subgroups).

Proposition: The sum of geometric multiplicites is at most the dimension of the whole space because
otherwise the dimension would be too high.

Proof: | will put a proof in the notes for next lecture due to some stuff to cover first (similar matrices).
For now we will use it (ok since we promise to prove it in due course).

Definition: The defecit of an eigenvalue is the difference between their algebraic and geometric
multiplicities. We will show also later in this course that the defecits are all 0 if and only if the matrix is
diagonalizable.



4 1 0
Example: Consider 4 = (0 4 1). Then the characteristic polynomial is just (4 — 1)3.
0 0 4

Lets see what happens for the geometric multiplicity. We want (A-41)v=0, so

0 1 0\ x

(0 0 1) <y> = 0, which implies that y=z=0, so the x axis is the eigenspace, so the geometric
0 0 0/ ‘\z

multiplicity is 1 so the defecitis 2.

Example: If we take a reflection in a plane with normal n, then geometrically we see that we have an
eigenvalue 1 with eigenspace parallel to the plane and eigenvalue -1 with eigenspace parallel to the
normaln.

cos (8) —sin (0)
sin () cos (60)
thisis 12 — 21 cos(@) + 1 = 0, and one checks that the eigenvalues are e

o (L),

If we have a rotation in 3D about n, then we must have n an eigenvector with eigenvalue 1, and
+i6

Example: Arotation in 2 dimensions is given by ( ) The characteristic polynomial of

6 \ith eigenvectors parallel

perpendicular to n we have the same behavior as in the 2D case, ie eigenvalues e

(-l_%l) where (é) , ((1)) are considered to be perpendicular vectors that span the plane perpendicular to

with eigenvectors

n.
-3 -1 1

Example: ConsiderA = —1 —3 1 ]. Then, I won’t go through this explicitly, but it turns out that we
-2 =2 0

have only an eigenvalue -2 with algebraic multiplicity 3. But we can see that the kernel of A+2| will not

-1 -1 1
have dimension 3 since that would imply A+21=0, so we do have a defecit. But A+2l is (—1 -1 1)

-2 =2 2
which we see has rank 1 since it puts everything to a line. Therefore the geometric multiplicity has
dimension of the nullity of that matrix which is 2.

Proposition: Diagonalizable (in the complex numbers) is equivelent to geometric and algebraic
multiplicities being the same. In the real numbers this is the case if all eigenvalues are real.

Proof: We will do this next lecture due to time constraints.
Lecture 19:

Suppose the geometric and algebraic multiplicities are the same, then we have eigenvectors that form
a basis for the vector space, and thus the matrix is diagonalizable.

If the matrix is diagonalizable, then it has to be that A = PDP~! and since P is invertible it must form a
basis of eigenvectors so there has to be as much total geometric multiplicity as n.

Now we know that if eigenvalues are all distinct the matrix is diagonalizable. But the matrix can still be
diagonalizable otherwise, it justisn’t always.

The lecturer also provided the proof that a set of eigenvectors with distinct eigenvalues is linearly
independent. See the proof of this in level 6.



Definition: Matrices A and B are similar if there exists a matrix P such that B = P~1AP. Equivalently,
they are similar if they are conjugate in the groups sense. We can now interpret a matrix as
diagonalizable if it is similar to a diagonal matrix. In fact, similar matrices can be thought of as
representing the same linear map with respect to a different basis. This is not too hard to see
intuitively but we will look into this idea more formally soon.

Proposition: If matrices are similar then they have the same characteristic polynomial, and thus the
same trace and determinant and eigenvalues.

Proof: Det(B — AI) = Det(P"*AP — Al) = Det(P~*AP — P~1(AI)P) = Det(P~1(A — A)P).
Decomposing the determinant as a product we see that Det(B — AI) = Det(A — AI). So done.

Theorem: Geometric multiplicity is at most algebraic multiplicity.

Proof: Let an eigenvalue have geometric multiplicity k in a matrix A. Then A is similar to a matrix that

(/Uk B)

0 ¢C

Now lets compute the characteristic polynomial of this, which must be the same as that of the matrix
A:

can be written as four blocks as follows:

P(x) = Det (“ - ’f)) =l . i In_k)

Note that since we can do column operations (remove multiples of the first k columns until B
vanishes) without changing the determinant, it is then easy to see (by the volume property) that

P(x) = (A —x)*Det(C — xI,_;). We have the factor (1 — x)* proving that the algebraic multiplicity is
at least k, so done.

Theorem: The eigenvaleus of a hermitian matrix are real

Proof: Let v be an eigenvector with eigenvalue A.

v1(Av) = vT(4Tv) = WTAT)v = (Av)Tv since Ais hermitian so

wty =ty

But A equals its conjugate so is thus real.

Theorem: Eigenvectors of a hermitian matrix from distinct eigenvectors are orthogonal

Proof: Copy the level 6 proof about decomposition of symmetric matrices which proved the same
thing, and just replace transpose with hermitian conjugate and everything accordingly.

Theorem: For each eigenvalue of a real symmetric matrix we can pick a real eigenvector v.

Proof: Let u be the real part of v. Then Au is real and A(v-u) is imaginary, and thus are the real and
imaginary parts of Av, so Au=Au since the real parts match, so u is a real eigenvector.

Lecture 20:

Let {w;,w,, ..., w,.} be a set of r linearly independent vectors. We will construct a sequence of sets of
the form {u,, w,/', ...,w,.'}, {ug, uy, w3”, ..., w,."’} such that at the end we have a set of orthonormal
vectors, such that each set has the same span and is linearly idnependent. To do this we will make



sure the u;’s are orthonormal to eachother and orthogonal to the w’s. In the first step we will simply
take u, = ﬁand write Wj’: =wj — (uj. wj)ul to ensure u4 has length 1 and is perpendicular to every
other vector in the set. Now we do the same thing to turn {wy, w3, ..., w;,.'} into {u,, w3"/, ...,w;,.” } untilwe

finish, where at the end we will have an orthonormal basis for our vector space. We have the gurantee
at each step that everything is orthogonal to previous u vectors by construction.

Definition: an Eigenspace is a space of eigenvectors corresponding to an eigenvalue.

We can now find an orthonormal basis for each eigenspace of a hermitian matrix A by the proposition
above.

Theorem: Let A be a Hermitian matrix of size n*n, then A is diagonalizable, and in fact we can
diagonalize it by PYAP = D as thatis equal to P~AP since P can be chosen to be unitary by above.
This is stronger than what was used at A level since this allows for repeated eigenvalues.

Proof: Induction on n: For n=1 this is trivial.

Now suppose itis true for n=k. Then any (k+1)x(k+1) hermitian matrix H has a characteristic
polynomial which has a real root with an eigenvector. Now pick any eigenvector and pick a basis that
includes this eigenvector. Now apply the above procedure (called Gram Schmidt) to turnitinto an
orthonormal basis. Now we will suppose that this is our basis — we will talk more on this point soon,
but basically we know

He; = A1e4
Now we can write our matrix like
A4 O 0
a=\lond
0

Proof that we have zeroes on the top row: The matrix Is hermitian, but it is not obvious since it is with
respect to another basis. But don’t worry — this basis is orthonormal. We can move it to the standard
basis using a unitary matrix, do the transformation, then move it back. le, A = UHU !, where since U
is unitary it equals its hermitian conjugate. A = UHUT, now use the fact that A is hermitian and take
the conjugate of both sides to get that A = At follows. Now “C” is a k*k hermitian matrix with respect
to an orthonormal basis so we can apply the induction hypothesis then we are done.

More on “change of basis” stuff: If A represents a linear map T from V with basis {e,, ... e, } to W with
basis {fi, ... fn} then T(e;) = ¥, fjA;j;. If bases of the same vector space are related by e; = 3. e, Py; we
can construct the matrix P accordingly to do a change of basis. If we also set T(e;") = ¥, f;'Bj; and

fi’ = X fiQxi, then (Proposition) we have a change of basis by B = QAP where A and B represent the
same linear map with respect to a different basis

Proof of the proposition:
T(e;") = T(XexPyi) = XT(ex)Pri = XX fiAjk Pri = X fj(AP) j;
T(e;) =X fi'Bji = XX fiQxj Bji = X fi (QB) ki

All steps directly from the definitions above, being careful to use the correct indices.



We now rename the indices so that they match and then we see that QB=AP by comparing
coefficients so it follows that B = Q" 1AP. Qisinvertible because everything is linearly independent.

Here is an intuitive diagram to show whatever the heck was just happening, noting that the writing
order of matrix multiplication is the reverse of the order the maps happenin.

Image: The promised diagram

When we left multiply a vector by P (say Pa=b), we note that the columns of P are how e, is formed by
a linear combination of e, which means if our vector a is actually how we write the vectorin e’
coordinates (basis) then the result b is how we write it in the original e coordinates (again it’s a linear
combination of components), as b, comes from the contribution of how much the a components add
to the k’th component of b, which is based on the k’th column of P. This means (we can say) P sends €’
to e (compare with matrix A, representing the linear transformation. we write some vector in
coordinate e, multiply by a, and get the result written in coordinates f, meaning we send e to f)

Remark: Column i of Arepresents T (e;) with respect to the f basis. This is a generalization of a known
fact about matrices from A level.

If we want to change basis in the other direction, then the matrices P’, Q' we need are such that
P'=Ptand Q' = Q7 %, sincewewant4 = Q'"'BP'.

Example: Consider dim(V)=2, dim(W)=3 and
T(e) =fi+2f2—f3
T(ex) =—fi+t2f2+f3

1 -1
2 2
-1 1

Now consider a basis suchthate; = e; — ey, e; =e; + e,

Then we can write the matrix A as

This makes P = (_11 1)

Now letw be suchthat fi = f; — f5,f2 = fo, f3 = fi + f3, this makes

1 0 1
Q=10 1 0
-1 0 1



Therefore the change of basis formula gives

2 0
B=Q AP = (0 4). Therefore T(e;) = 2f,', T(ey) = 4f,', T(e3) = 0.
0 0

Note: If V=W with the same basis then we must have P=Q. Therefore, matrices represent the same
linearmap T: V — V if and only if they are similar.

Lecture 21:

Here we reprove the change of basis formula just to make sure it’s really clear, | guess (I’'m not sure
why we’re re-proving it):

Consider a vector space V and x a vector in V, and let V have 2 bases {e;}, {e;} related by a matrix P by
ej = Y e;Pjjand x = Y x;e; = Y x;e;. But now we know thatx = ¥ x/e; = ¥; x; 3; e;P;;. Therefore

!/

xl P11 Pln x1

Xy x,'
= 2 |, therefore x=Px’.

le Pnl Pnn xnl

Similarly, consider a vector space W with a vector y and bases {f;}, {f;'}, then by the same argument
y=Qy’. If we have a linear map V to W then we can write it in matrix form as y=Ax and y’=Bx’. Combining
this with what we proved above we get the same conclusion: B = Q~1AP.

On the Cayley-Hamilton theorem:

We can verify it for matrices of a specific size (like 2*2 or 3*3) by just doing some tedious algebra. We
won’t do this but you can do it yourself if you want to, but of course this is not possible to do for
infinitely many sizes.

If Ais diagonalizable, the proof is much easier. P"1AP = D and the characteristic polynomial applied
to D gives O since its diagonal entries are roots of this equation. To spell out why this extends to A,

P 1APP APP AP ..P AP = P~YAAAA ...AP = P~1Akp = Dk
A=POP1=0

We can argue that any matrix is arbitrarily close to a diagonalizable matrix if we perturb itin a clever
way to get a second proof different from the one in Level 6 (which the lecturer is doing but this is non-
examinable), but the details can be tricky and this is beyond the course.

Definition: A quadratic form is a function F: R® — R such that F(x) = xT Ax where A is a real
symmetric matrix. We can diagonalize Ato get F(x) = (PTx)"D(PTx). We will rename PTx to x’. If we
setx = x;eq + - xpep, X' = X164 + -+ + X5,€, then we can make a new basis such that

X = x;'uq + - x,'uy,, and we will call this the principal axis of the quadratic form. These are related to
the standard axis by the orthogonal matrix P. Because of this, |x|?> = ¥ x;x; = ¥ x{x].

Example, let F(x) = xTAx with A = (Z Z) This has eigenvalues a + b and normalized eigenvectors
\/%(i_ll) We can see that F(x) = ax? + 2bx;x, + ax? = (a + b)(x})? + (a — b)(x3)?.



As an example, if wetakea = =,b = —gthen F(x) = (x1)? + 2(x3)? which is an ellipse with axis being

Q Nlw

at the eigenvectors. If we take a = — %, b= %then we get F(x) = (x])? — 2(x5)? which is a hyperbola.

Lecture 22:

Example: Let F(x) be a quadratic form that is already diagonalized so we can write F(x) = x Dx with
respect to our principal axis. If the eigenvalues are all positive then we set F to equal a constant we get
an ellipsoid, ie a sphere with axes stretched. If eigenvalues are some positive and some negative, like

0 1 1
inthecase A = (1 0 1), we get a hyperboloid, which could be either in one piece or two pieces, |
1 1 0

will show an image to visualise this:

Images: 1-sheated vs 2-sheated hyperbola.

Note that a matrix M can be decomposed additively into a symmetric and antisymmetric part. For A
antisymmetric, one checks that xT Ax = 0, and this is why we only define this for symmetric matrices.

Defintion: A quadric in R" is a hypersurface defined by setting Q(x) := xTAx + b"x + ¢ = O fora
symmetric n*n real matrix A and b a vector in R".

We want to classify this up to solutions related by rotations and reflections and translations.

If Ais invertible then we can complete the square. We can take avectory = x + %A‘lb. If we do
algebra on this we see that yT = xT + %bTA‘l, andthatyTAy = xTAx + %bTx + ibTA‘lb. What we
candois put yTAy = xTAx + %bTx + %bTA‘lb +c—c=0Q(x)+ %bTA‘lb — ¢. This means that
F(y) = ibTA‘lb — cis equivalentto Q(x) = 0. Now we diagonalise F, then the eigenvalues of A and
the value of i bTA~'b — c are what determine the geometrical nature of the quadric. If they are all

positive we get an ellipsoid, if the eigenvalues have different signs and %bTA‘lb — ¢ # 0 will produce a

hyperboloid. If some eigenvalues are 0, then we will not be able to do the trick above and get linear
and quadratic terms.

Definition: A conic is a quadric in R?. If Ais invertible then we get ax? + by? = c where xand y are
renamed to be the principal axis, and this is an ellipse or a hyperbola or a point (if c=0) or nothing (if
a,b>0 and c<0 or the other way around). If A is not invertible then we can still diagonalize it since it is
symmetric, then we get 1,x2 + b;x + b,y + ¢ = 0 where x and y are our principal axes. Thisis a
parabola (unless b, = 0 in which case it is a pair of lines or a line or nothing, or both eigenvalues are 0
in which case it is a single line). See level 6 for the half-visual-half-algebraic proof that all of these
(except for the degenerate cases of nothing, points or lines) are actually the slices of a cone. | now am
going to make a guess that quadrics in general are slices of higher dimensional cones but | don’t know
if this is true.

Lecture 23:



Now we redo everything about conic sections in A level further maths and in the level 6 thing on conic
section properties. So look at that. I’'m not writing up this conic eccentricity focus directrix parabola
hyperbola ellipse nonsense again because I find it so boring. Moving on.

Theorem: Consider a matrix A of size 2*2 corresponding to a linear map from C?> — C2. Then itis
similar to one of the following:

i) (g 2) where there are no constraints on a and b —they may be 0 ot not or the same or not.

.. a 1

ii) (0 a)
Proof: The characteristic polynomial of A has 2 roots counting multiplicity over C. If the roots are
distinct then A is diagonalizable so there is nothing to prove. In fact the only case we need to worry
aboutis when we have a repeated eigenvalue with geometric multiplicity 1. Let v be an eigenvector

with the eigenvalue which is 1 and extend it to a basis by another linearly independent vector w. We
know that Av = Av, Aw = av + bw since v and w are a basis. Therefore the matrix is similar to a matrix

of the form ()L a

0 b)' Note that b = A since the characteristic polynomial must agree. So we are similar

to a matrix of the form (61 ;l) Also, a # 0 since we do not have a diagonal matrix by assumption. We
will now define u = av, then Aw = u + Aw. Now with respect to the basis {u, w} our matrix is (:)1 /11)

So done.

We now want to find a nice form for any matrix similar to any non-diagonalizable matrix to generalize
the theorem above. This will take a lot of work but we will get a very useful result.

Definition: Eigenspace

The eigenspace of an eigenvector A is exactly what you think it is — the vector space formed by
eigenvectors, or the kernel of A — AI. We write this as E(4)

Definition (Direct sum): An internal direct sum of vector spaces E; @ E, @ E5 ...E,,_, D E, isthe
vector space defined as a linear combination of elements of the E’s where the E’s are a subset of a
vector space. This is only defined if any set of vectors from each of the spaces are linearly
independent. An external direct sum is when we build a vector space from existing vector spaces
instead of subspaces of an existing vector space. We will just need the internal one for this thing we’re
doing to generalize the theorem above.

We know that eigenspaces form an internal direct sum as we proved earlier that eigenvectors with
distinct eigenvalues are linearly independent.

Proposition: A matrix A is diagonalizable in C if and only if there exists a non-zero polynomial p such
that p(A)=0 and p(x) has no repeated roots.

Proof: If Ais diagonalizable then the vector space is the direct sum of the eigenspaces because of
geometric multiplicities and stuff. So v can be written uniquely as a linear combination of
eigenvectors. Now consider the polyno mial p(t) = i-‘zl(t — A;) where kis the number of distinct
eigenvalues of A. Then p(A)v = Y. p(A)v; = Y. p(4;)v; = 0 as again, A is effetively 1, when it is acting
on the vector v;. Conversely, suppose such a polynomial exists. Then there must be one of the form
i-‘zl(t — ;) with eigenvalues, since if we had another polynomial with p(A)=0 we could factor out



non-eigenvalue factors by taking the inverse and multiplying. So suppose a polynomial of that form
exists such that p(A)=0. Then we want to show that any vector in V is a sum of eigenvectors of distinct

eigenvalues. Let q;(t) = Hiij%which is a polynomial of degree k-1. Note that q;(4;) = §;;. Now
j—M
consider q(t) = ¥, q;(t). Thendeg(q — 1) < k but q(4;) — 1 = 0for all | from 1 to k. Therefore q=1.

Now let r; be a matrix given by qj(A), then the above says that ), m; = I. Therefore given vin our vector
space, we know that v = }; ; v. But then we want to show that ;v is in E(4;), and this is true as we
ﬁp(a)v = 0.

Hm,l T (s A - A)v_ni,

Therefore v = ), 7; v is a sum of eigenvalues. So done. Note that in the proof above, 7; can be thought

can reverse the definitions to get that (4 — A,1)m;v =

of as a projection onto the j’th Eigenspace.

Definition: The minimal polynomial of a matrix A is the polynomial p of least degree such that p(A)=0.
This always exists by the cayley hamilton theorem. Note that if there are two minimal polynomials of
the same degree that are not a constant multiple of eachother then we can rescale and subtract them
in such a way that we get a polynomial of a smaller degree. So it is unique. Every polynomial p with
p(A)=0 is a multiple of the minimal polynomial because we can write it as a multiple of the minimal
polynomial plus a remainder R where p(R) cannot be 0.

Example: The minimal polynomial of | is t-1. The minimal polynomial of (1 1) is (t — 1)2: Itis not

0 1
linear but it divides the characteristic polynomial so there’s not much else it can be since its degree is

2.
Theorem: A matrix is diagonalizable if and only if its minimal polynomial has no repeated roots

Proof: This follows from the previous theorem: If there is any polynomial with no repeated roots that
the matrix “satisfies” then the minimal polynomial has no repeated roots, and the converse is true, so
this statement is equivalent to the matrix being diagonalizable.

The multiplicity of an eigenvalue in the minimal polynomial which we write as c; gives a third
multiplicity type. We will call the algebraic and geometric multiplicities a; and g;.

Lemma: Similar to for geometric muttiplicity, 1 < ¢; < ay

Proof: The second inequality is easy as the minimal polynomial divides the characteristic polynomial.
The first inequality is because the minimal polynomial of a matrix applied to an eigenvector must send
the eigenvector to 0, but because of the idea that a matrix can be considered to be Al when we are
thinking about what it does to an eigenvector, it means p(Al)=0 so A is a root of p.

Definition: We say a matrix is in jordan normal form if it is a block diagonal matrix of the form in the
image below

*}nl(}'ll) ﬂ



Where each “jordan block” is something like the image below, and the n’s give the size of the
corresponding matrix to the image below.

A1 0
0 A

: 1
0 0 A

So a matrix in jordan normal form might look something like the image below

(A1 \

A1
A1 0
Aa 0
Az 1
)\3 0

a1
\ M)

Theorem: Every matrix can be written in Jordan Normal Form in a unique way up to permutation of the

blocks. We will talk about matrices that have jordan normal forms and eventually prove that every
matrix does. The image below shows the possible jordan normal forms for 3*3 matrices, as well as
their minimal and characteristic polynomials which we can work out (although for higher dimesnional
matrices, even knowing both of these polynomials does not determine the normal form).

Jordan normal form Xa My

A1 00
(ﬂ Az 0) (= A= A)(t —Az)  (t— At — A2)(t — A3)
0 0 X
A 00
0 A 0
0 0 X

Ao1o0
0 A 0 (t— A)2(t— A2) (t— A1)2(t — A2)
0 0 X

(t =A%t = A2) (t = At —Ag)

A 00
0 A 0
0 0 M\

Mo10
0 M O
00 A

M 10
0 A 1 t— M) (t— M)
0 0 A

Now note that J,,(1) = J,(0) + 11

Note that in the standard basis, we have that J,,(0)(e;) = 0,/,(0)(e;+1) = e;. Therefore we know by
0 In—k
0 O

k>n then we get the 0 matrix. Therefore the minimal polynomial of J,,(0) is t™ (this is minimal as any

considering what doing this several times would do that (J,,(1) — I1)¥ = (]n(O))k = ( ) And if

factor of this will not give 0), and thus the minimal polynomial of J,,(1) is (t — A)™ as if there was one



with smaller degree we could shift it to get a smaller polynomial for J,,(0). Let n(A) denote the
dimension of the kernel of A, then n(4) = X n(J,,,). It should hopefully be clear that

n((J,,(1) — AL,)") = min (r,m). The intuition for this first m times we multiply this we essentially kill
another column and increase the nullity by 1, then when the nullity is m we can’t go any further.

Note that since blocks in block matrices all act on independent vector spaces, there are several
things we can say. The determinant of the matrix is the product of the determinants of the blocks by a
volume argument if we think about the standard basis. Therefore the characteristic polynomial is the
product of the characteristic polynomial of the blocks. By definition of the minimal polynomial, the
minimal polynomial is the lowest common multiple of the minimal polynomials of the blocks.
Therefore because of these facts we know that g, is the number of jordan blocks with eigenvalue 1
(because each jordan block of A adds 1 to the size of the kernel of A-Al), a; is the sum of sizes of jordan
blocks with eigenvalue A, and c; is the size of the largest such block.

Lemma: Jordan normal forms are unique up to permuting the blocks if they exist

Proof: Suppose A is a matrix in jordan normal form. Then the number of jordan blocks for an
eigenvalue A that have at least size ris given by n((4 — A1)") — n((a — AI)""1): The reason why is
because itis exactly for the blocks of size at least r that multiplying for the r’th time increases the
nullity by 1. But now we can work out by doing the right subtraction the number of jordan blocks of a
certain size for a certain eigenvalue so they are indeed unique.

Back to the existence proof.
Definition: A generalized eigenspace is V; := Ker((a — 1;1)%)

Lemma: V is the direct sum of generalized eigenspaces, ie linear combinations of them span V and are
linearly independent.

Proof: p;(t) = [1;x;(t — 1;)%. Note that the highest common factor of py, p, is [155(t — 4,), so
Bezout’s identity for polynomials (Level 4) means [[¥_5(t — 1;)“% is a linear combination of p;, p,. But
then [T ,(t — 1;)“% is the highest common factor of [[¥_;(t — ;)% and p; and is thus a linear
combination of p4, p2, p3. By repeated similar logic, or induction, whatever you want to call it, we have
q polynomials such that ) p;q; = 1. This is actually always true for coprime sets of polynomials and
numbers by similar logic so this is a useful idea to keep in mind for the future and not just this proof.
We now define the map rt; := p;(4)q;(4) = q;(A)p;(A4) (since factorizations like this of a matrix
commute as we can expand them the same regardless of the order). Then by construction, ). ;= 1.
We will now call the minimal polynomial of A M. Then M(A)=0 by definition but we know M(t) =

(t — Ajl)c’lfpj(t), therefore 0 = M(A4)q;(4) = (t — Ajl)clfnj (A), so the image of m; is in the generalized
eigenspace V/;. Now suppose vis in our vector space V, then v = [v = > 7; v which is in the set of
linear combinations of stuff in the generalized eigenspaces. To show that this is a direct sum, note
that ;; = 0 since the product contains M(A) as a factor. t; = Im; = (Z nj)ni =m?,som;isa
projection onto some space, and this space we know is contained in V;, and itis V; because w;v; = v;.
The reason is because

i) If vis in a different eigenspace, such as I;, then by definition (a - Ajl)clfv = 0, butthenm;

contains (a - Ajl)c’lf as a factor so if we move that factor to the right we have that r;v = 0



i) IfvisinV;thenv =Iv = (Z quj)v = anv = m;v since the other terms vanish. So done.

Therefore by the projection property if a non-trivial linear combination of vectors in the V;’s is 0, then
doing mr; will make that O for all i, which will extract each component and show that each component
is 0. So Vs the direct sum as claimed.

We will now check that anything in a generalized eigenspace stays there under A. The proof is straight
forward if we use the idea since we know that we can commute linear factors in a polynomial of the
matrix: (4 — ;)% (Av) = A(A — ;1) (v) = A0 = 0, so Av s in the generalized eigenspace by
definition, so if we make the basis around the generalized eigenspaces then the matrix must be block
diagonal because of this. Now we will check that any of these blocks in this block diagonal matrix only
has 1 eigenvalue. The reason is because if (A — u)v = 0 where we are only working in this specific
generalized eigenspace. But then by definition of the eigenspace, (4 — 1;1)%v = 0. Then

(A—2;Dv = (u— A)vifvis an eigenvector with eigenvalue g, so 0 = (4 — ;1) iv = (u — A;) v,
butvis not 0 so the only way this can happenis if 4 = A; since this is just a constant that we are
multiplying v by, so there is only one eigenvalue. Therefore if we can show the main theorem for
matrices with only one eigenvalue, we are done. In fact, by subtracting Al, we can just show it for
matrices where all eigenvalues are 0. Such matrices are called Nilpotent. Nilpotent is usually defined
a different way but we will show that that definition is equivalent.

Proposition: A matrix is Nilpotent if some power of it is the zero matrix. This is equivalent to the above
definition.

Proof: If all eigenvalues are 0 the other defintion follows from the cayley hamilton theorem.
Conversely, suppose the matrix satisfies this other definition, then if an eigenvector has a non-zero
eigenvalue then it will never go to 0 no matter how many times we multiply by the matrix, so all
eigenvalues are 0. So done.

So now we just need one more thing.
Lemma: A nilpotent matrix is similar to a matrix in Jordan normal form.

Proof: Now suppose we have a nilpotent n*n matrix L with minimal polynomial t* with k > 1 (since if
k=1 the theorem is trivial). We see that the eigenvalue 0 has algebraic multiplicity n and geometric
multiplicity n(L). L is not diagonalizable because otherwise it would be similar to the zero diagonal
matrix and thus would equal zero. The images of L™ as n increases from 0 to k form a subset chain, ie
V 2 Im(L) 2 Im(L?) ... 2 Im(L¥) = 0. This is because Im(L**1) € Im(L% o L) € Im(L%). These
inclusions are actually strict since otherwise L would be a bijection on a non-zero vector space which
is not possible since L is nilpotent. Therefore we have (by the rank nullity theorem, and the fact that a
kernel of something is in a kernel of L times that thing) 0 € Ker(L) c Ker(L?) ... € Ker(L¥) = V. Let
Q; = Ker(L) N Im(L)), thenitis easyto see that Ker(L) = Qg 2 Q; 2 Q, ... 2 O, = 0. Now lets think
about the rank of the product of two matrices: Rank(XY) is gonna have to be the dimension of the
image of XY, which is the dimension of the image of Y minus the null space of X when restricted to the
image of Y, which is Ker(X)nIm(Y). Therefore we get the formula Rank(XY)=Rank(Y)-Dim(Ker(X)nIm(Y)).
Therefore d; = Dim(ﬂj) = Rank(Lj) — Rank(L’*1) with d,, = 0. Now lets investigate Q,_;: Anything
in the image of L*~1 will be sent to 0 if it is multiplied by L again, therefore it is in the kernel of L, so the
intersection definition reduces to Q,_; = Im(L*~1). We can obtain a basis for Q;_;. We will write this

basis as wy, Wy, ... w, _ such that for each w; | can find a vector xi(k_l) such that L"‘lxi(k_l) = w;. Now



recall that Q,_, = Ker(L) N Im(L¥~?). We can now extend the basis for Q,_; to a basis for Q,_,. Lets
write this new basis as w'y, w',, ...w's,__ . Since each thingis in Im(L*~%), | can find x’s such that we

have that Lk‘le.(k_z) = w';. Now note that we must have that s; = d; — d;,; from how we have been
using the s’s. We will continue doing the process we have been doing to obtain a basis for Ker(L).

Now we want to construct jordan chains: We had that, eg, Lk‘zxi(k_z) = w';. The jordan chain is the
following list of lists of vectors, and there is a jordan chain for each power of L. It’s a lot:

- k-2
Lk le-( ) = Wli

Lk_3xi(k_2)

Lx®*=2

l

xi(k_Z)

Fori (in this example) ranging from 1 to s;_,. | now claim that, in fact, the set of all k jordan chains
forms a basis for V. From the way | have written this out it seems like there are a ton of these vectors
compared to what you would expect the dimension of V to be, but it works as in practice the s’s are
often 0 so these don’t all come up. Therefore we need to check that there are n of these vectors and
that they are linearly independent. The totalis ks,_; + (k — 1)Sj—p + (k — 2)Sj_3 + -+ 25; + 59
since we are adding up the size of the jordan chains. Lets manipulate this sum a bit, keeping in mind
thatd, = 0:

k-1 k-1 k-1 k-1
DG+D5 =D G+ D@ =) = ) G+ D@) = ) G+ D(d)
j=0 j=0 j=0 j=0

k-1 k-1 k-1
=d, + Z(j +1)(d;) - Z(i)(dj) =do+ Z(dj)
=1 j=1 Jj=1
k-1

=N(L) + Z Rank(L’) — Rank(L/*') = N(L) + Rank(L) — Rank(L*) = n
=

By the method of differences, the rank-nullity theorem, and the fact that L¥ = 0. So to check that we
have a basis for V we just need to check that our vectors are linearly independent. We will now

construct a few matrices:

Qo with the columns:

(k-1) , (k-1) (k-1)
X, , Xy N M
Q; with the columns:
(k-1) ; (k-1) (k-1)  (k=2) _(k-2) (k-2)
Lx; ,Lx; , ...,Lxsk_1 , Xq , Xy s Xy
Q, with the columns:
szik_l), L? xék_l), " szs(,’j_‘f), ink_z), Lxgk_z), " Lx_g:__zz), xik_B), xék_3), " xs(:__sg)

And so on until Qy_;.



Now we define a matrix Q to have columns Qy_4, Qx—_2, ..., @2, Q1, Qp- Now we will ask ourselves what
the solution is to Qz=0 for vectors z: We hope that this is just z=0 since this would verify linear
independence.

We will write z = |ZJ where each thingy here is a sub-vector corresponding to each Q;. We will now

Z

5]
multiply the equation we are looking at on the left to get that L¥~1Qz = 0. By nilpotence, any column in
Q that involves an L will go to 0 under the matrix L*~1Q. But then consider what happens with Q,: The
vectors xfk_z), xék_z), e, xs(’k‘__ll) when multiplied by L*~! are in the Q’s, in fact one of the w’s from
earlier and thus in the kernel of L and thus when we multiply them by we get 0. But with Q; and higher,
we get a power of L above where we would be in the kernel and thus go to 0. Because the w’s were part
of a basis and were linearly independent, it means that if Lk_lQOZ = 0 implies z=0. Therefore, we know
now that Z = 0. Now we will look at L¥=2Q,z = 0, then by the same argument the only non vanishing
parts are Q, and Q,, but we are interested in L¥~2Q, as those columns are the (w’)’s, which are again
linearly independent by construction, so by the same argument we know that Z = 0. We can continue
to do this and then we will get that z=0 so we indeed have a basis for V. We will now consider j ranging

from 0 to k-1 v ranging from 1 to s; and the j+1 column matrix of columns

[fo,if),Lf—le,f), o, L ,xl(,j)] = P;,.Then LP;, = [O, UxD, ... 2P ,Lxl(,j)] sinceL/x isinthe

(0 1 .. 0 O\‘

kernel of L. What happens nowis P, 0 0 .. 1 0 |=LP;,sowefinally see some jordan stuff
0O 0 .. 0 1
0O 0 .. 0 O

happening. We will make P out of all possible P;;’s, then we will achieve our goal because P7lLPisin
jordan normal form: it is made out of the blocks corresponding to those 0-1 matrices we saw above.
So done.

Proposition: All of the following are equivalent to a matrix R being orthogonal:

i) (Rx).(Ry) = (x.y)

i) RTR=RRT =1

iii) |Rx| = x for all vectors x

iv) Columns of R are orthonormal

Proof: See Groups notes —we just did this proof in that course. We define the special orthogonal group
here but we just defined it in the groups course as well so please see that.

We can think of O(n) as preserving lengths and angles and SO(n) as also preserving orientations.
Lecture 24:

For a rotation matrix R we can make a new orthonormal basis by u; = Z]- R;;e;. We can think of it either
as a change of basis or a transformation of vectors. The components of Rx with respect to the
changed basis are the same as the components of x with respect to the normal basis. We can also
think that a vector stays the same but the axes move in the opposite direction, ie by R™1. Consider an

1

0 _01) y. This not satisfy the properties that an inner product

“inner product” given by (x,y) = x7 (



should satisfy because it is not positive definite, ie (x,X) is not necessarily a non-negative real number.
However, the oother properties are satisfied if we are working in the real numbers. We still have that
(1,0) := ey and (0,1) := e, are orthonormal in the sense that their product is 0, and their product with
themselves are 1 and -1 respectively. This “inner product” is called the Minkowski metric and R?
equipped with this metric is called a Minkowski space.

Note that a linear map T:RR? —» R? preserves the Minkowski metric if and only if (Tx, Ty) = (x, y) for

all x and y. But then this means that (Mx)TJ(My) = xT]y for all xand y where (é _01) = /. This holds

if xTMTJMy = xT ]y so it holds always if ] = MTJM. The matrices of this M for which this holds is a
group as it contains the identity and is closed under inverses and products and matrix multiplication
is associative. Also, we know that Det(M) = +1 since the determinants have to agree. We will restrict
this group to those with determinant +1. This is called the Lorentz group.

Note that el MTJMe, = eyJe, = 1 and we can use this to deduce that M&, — M%, = 1, M3, — M, = —1
since we have decided to start zero indexing things now just because we figured that would be funny.
i-l__-(s:.?r?}il gg)) iz;r;?l Eg) We will restrict the cosh terms to be positive and
cosh () sinh (0))
sinh (6) cosh (0)
which we can now see forms a group since it is closed since multiplying them just adds the s, soitis
essentiallt the group of real numbers under addition (ie it is isomorphic). With the norms from the

normalinner product, we got circles when we kept it constant. Now we can see that we will get

We can then write this as (

then the sinh terms can be any sign depending on the sign of 8, so we can write (

hyperbolae when we do this. xTJx = x3 — x? and we keep x3 — x? = ¢ so we get a hyperbola. We can
1 ( 1 tanh (0)

Vi-tanh? 6 \tanh (0) 1

interpret v as the factor of the speed of light we are going at, and this has to be between -1 and 1. We

rewrite M(0) = ) Define v := tanh (0) and t == x,, x *= x;. We can

caninterpret a’ = Ma for a=(t,x) as:

1
t' = —=({t+vx),x' =

1
V1 —v? V1 —v?

See level 8.5 to see why we are doing this: There is a physical interpretation for the idea that this gives

(x +vt)

relativistic effects.



