
Lecture 1: 

The course starts with a review of complex number properties from A level further maths which is 
because we will later look at vectors and matrices with complex number entries. There are two new 
things that were proven in lecture 1. 

For any complex number z=a+bi, 1
𝑧
=

𝑎−𝑏𝑖

𝑎2+𝑏2 =
𝑎−𝑏𝑖

|𝑎|2
, and this can be easily verified. Also, 𝑧𝑧̅ = |𝑧|2, 

proven because the modulus and arguments agree. 

For any complex number z, sin(arg(𝑧)) =
𝐼𝑚(𝑧)

|𝑧|
 and cos(arg(𝑧)) =

𝑅𝑒(𝑧)

|𝑧|
. This is immediate from 

drawing a little diagram (image below), as it falls right from the o/h and a/h definitions of sin and cos. 

 

Also, many polynomials have roots in the real numbers, but some, such as 𝑥2 + 1 = 0 do not. 
However, that polynomial has a root in the complex numbers. It turns out that all polynomials with 
complex coefficients have a root in the complex numbers, and this is called the fundamental theorem 
of algebra. In the A level documents, we mentioned this, but did not give the proof as we did not need 
to. However, there is a nice visual argument for why this is the case. 

Once I have proven this, we know that by repeatedly factoring out z-(our root) from any polynomial in z 
until we are left with a constant, that all polynomials are a product of linear factors. 

To prove this, I will approach it by first doing an example to show the idea, and then provide the 
general proof. 

As an example, we will prove that 𝑧3 + 2𝑧2 + 2𝑧 + 3 has a root in ℂ. Suppose 𝑧 = 𝑟𝑒𝑖𝑡 where t can go 
from 0 to 2π and r is picked to be sufficiently large (we will show this can always be done). Suppose 
r=4 for this example. Now consider 𝑧3 as we let t change. This is just 64𝑒3𝑖𝑡 which is a circle of radius 
64. 

 



Now lets continuously add 2𝑧2 = 32𝑒2𝑖𝑡 to each point. If you picture each point moving to its new 
position, you will see they cannot move more than 32 units, which means you can see that the new 
loop must enclose the circle centered at the origin of radius 32 as we can never enter this circle during 
the continuous transformation. 

 

Now lets add 2𝑧 = 8𝑒𝑖𝑡. Something not inside a radius 32 circle moving by 8 units surely won’t be 
inside a radius 24 circle. Here’s the new diagram, which must enclose the radius 24 circle. 

 

Finally, we add 3 and we are now enclosing the radius 21 circle for similar reasons. 

 

Now continuously shrink the value of r. As this happens, our diagram will continuously shrink to the 
point at 3. Therefore, at some point during the shrinking, our loop will have to touch the origin. There is 
no way to continuously move the loop to the point at 3 without breaking it and without touching the 
origin. When we do touch the origin, the value of z corresponding to that point is a root of the 
polynomial, meaning a root exists. This is the core idea. This happens at the point where we go 
from enclosing the origin to not enclosing the origin, which exists and is somewhere between 0 and 4. 
Everything is continuous here because it is differentiable, but we will try to avoid getting stuck on 
trivial details like these. 

So, in general, to pick r large enough, we can make it larger than twice the absolute value of the largest 
coefficient. This will ensure that the minimum enclosed circle radius which went from 64 to 32 to 24 to 



21 in our above example will stay positive, by a geometric series bounding argument (since each 
difference will be at most half of the previous one so the sum of all the differences will be no larger 
than the starting value). So I should have picked r=6 in the first example, but 4 turned out to be good 
enough for our purposes. 

Lecture 2: 

We reviewed some complex number properties from A levels, including some of the stuff about 
branches from the exponentials and logarithms video in level 4. However, we do prove two new 
equations that describe lines and circles. 

A line in the complex plane can be described by a point on the line 𝑧0 and a direction 𝜔 so that the line 
is all points 𝑧0 + 𝑎𝜔 with a real. Write 𝑧 = 𝑧0 + 𝑎𝜔. Taking conjugates on both sides gives 𝑧̅ = 𝑧0̅ + 𝑎𝜔̅. 
For now we will assume |𝜔| = 1. Then 𝑧 − 𝑧0̅̅ ̅̅ ̅̅ ̅̅ = 𝑧̅ − 𝑧0̅ = 𝑎𝜔̅, since recall it is straight forward that 
𝑎 ± 𝑏̅̅ ̅̅ ̅̅ ̅ = 𝑎̅ ± 𝑏̅ and that 𝑎𝑏̅̅ ̅ = 𝑎̅𝑏̅ as can be verified by splitting everything into its real and imaginary 
parts and subtracting imaginary parts for the conjugate. Since 𝜔−1 = 𝜔̅ as |𝜔| = 1 (since 𝜔𝜔̅ =

|𝜔|2 = 1), we therefore have (𝑧 − 𝑧0̅̅ ̅̅ ̅̅ ̅̅ )𝜔 = 𝑎, and substituting this into 𝑧 = 𝑧0 + 𝑎𝜔 gives 𝑧 = 𝑧0 +

(𝑧 − 𝑧0̅̅ ̅̅ ̅̅ ̅̅ )𝜔2. Dividing both sides by 𝜔 gives 𝑧 = 𝑧0 + (𝑧 − 𝑧0̅̅ ̅̅ ̅̅ ̅̅ )𝜔. Rearranging this gives: 

 𝑧𝜔̅ − 𝑧̅𝜔 = 𝑧0𝜔̅ − 𝑧0̅𝜔 as the general equation for a line. In fact, we no longer require |𝜔| = 1 as now 
we can just divide this equation by |𝜔| to get an equation of the form where the thing being multiplied 
by z does have an absolute value of 1. 

A circle can be written as |𝑧 − 𝑧0| = 𝑟 and therefore |𝑧 − 𝑧0|
2 = |𝑟|2, so (𝑧 − 𝑧0)(𝑧 − 𝑧0̅̅ ̅̅ ̅̅ ̅̅ ) = |𝑟|2, so   

|𝑟|2 = 𝑧𝑧̅ + 𝑧0𝑧0̅ − 𝑧𝑧0̅ − 𝑧̅𝑧0 = |𝑧|2 + |𝑧0|
2 − 𝑧𝑧0̅ − 𝑧̅𝑧0. So we can write the equation for a circle in the 

complex plane as 

|𝑧|2 − 𝑧𝑧0̅ − 𝑧̅𝑧0 = |𝑟|2 − |𝑧0|
2. 

Also, recall that any complex number z can be written as 𝑟𝑒𝑖𝜃. If 𝜃 ∈ (−𝜋, 𝜋] then we can write          
log(z) = iθ + log⁡(r) where log is the natural logarithm. The idea is that arg(z) is the imaginary part of 
log(z), and Arg(z) which is the multi-valued argument, ie arg(z)+2n𝜋 is the imaginary part of Log, where 
a capital letter at the start means the multi valued counterpart. 

Lecture 3: 

A vector can be thought of as an ordered tuple of real or complex numbers, or a line segment, or a 

thingy with a magnitude and a direction. If a vector 𝑣 = 𝐴𝐵⃗⃗⃗⃗  ⃗ then the direction of v is B-A. 

Definition: A vector space V (over ℝ or ℂ) is a set of vectors that satisfies some properties. Examples 
of vector spaces are ℝ𝑛 and ℂ𝑛 where n is some finite number. 

Property 1: We can add vectors, and addition satisfies that for vectors a, b in V, a+b is in V, a+b=b+a 
(commutitivity), (a+b)+c=a+(b+c) (Associativity), and there exists an identity vector 0 such that 0+a=a 
for all a, and for each a there exists a vector -a such that a+(-a)=0 (Inverses). This is exactly the axioms 
for an abelian group. 

Property 2: We can multiply vectors by scalars, where a scalar is an element of the set which our 
vector space is over (which is usually the real numbers or the complex numbers). Scalar 
multiplication satisfies the obvious properties: For any scalars λ and µ, λ(a+b)= λa+λb, (λ+µ)a=λa+µa,  
λ(µa)=µ(λa)=(µλ)a, and 1a=a. 



Example: ℝ𝑛 is the set of n dimensional vectors which are written as a list with n components that are 
each real-valued with addition and multiplication defined component-wise (ie add and multiply each 
component). A line in ℝ𝑛 is a vector space if and only if it goes through the origin, as that is necessary 
and sufficient for it to satisfy some of the given properties. 

Definition: If I have vectors a and b and scalars λ and µ, then any vector of the form λa+µb is called a 
linear combination of a and b, and analagously if we had more than 2 vectors and corresponding 
scalars. The set of all such vectors is called the span of a and b. 

Definition: a is parallel to b if a=λb for some scalar λ or b=0. If a is not parallel to b then the span of a 
and b is the plane through a, b and the origin, and this is geometrically obvious. 

We have met the dot product at A level before. Note that it is only defined for real-valued vectors, for 
complex-valued vectors it works a bit differently. Here are some obvious properties of dot products 
that follow immediately from either the geometric or algebraic definition, which we showed were 
equivalent in A level. 

- (λa).b=λ(a.b) 
- From the above property and the fact that we showed in A level that a.(b+c)=(a.b)+(a.c), we 

have that (λa+µb).c=λ(a.c)+µ(b.c) 

Note that a.a is the sum of the squares of the components of a by the algebraic definition of the dot 

product, so it is equal to |𝑎|2 by pythagoras. We can actually define |𝑎| this way as √𝑎. 𝑎, and |𝑎| is a 
norm. Norms are usually written as either |𝑎| or ||𝑎||, and they satisfy that |a|=0 if and only if a=0, 
always being positive, as well as the triangle inequality. 

We can get the cosine rule directly from the geometric definition of the dot product: For a triangle 

ABC, 𝐵𝐶⃗⃗⃗⃗  ⃗ = 𝐴𝐶 − 𝐴𝐵⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   so |𝐵𝐶⃗⃗⃗⃗  ⃗|
2

= |𝐴𝐶 − 𝐴𝐵⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  |
2

= 𝐴𝐶 − 𝐴𝐵⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . 𝐴𝐶 − 𝐴𝐵⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝐴𝐶⃗⃗⃗⃗  ⃗. 𝐴𝐶⃗⃗⃗⃗  ⃗ + 𝐴𝐵.⃗⃗ ⃗⃗ ⃗⃗  𝐴𝐵⃗⃗⃗⃗  ⃗ − 2𝐴𝐶⃗⃗⃗⃗  ⃗. 𝐴𝐵⃗⃗⃗⃗  ⃗ =

|𝐴𝐶⃗⃗⃗⃗  ⃗|
2
+ |𝐴𝐵⃗⃗⃗⃗  ⃗|

2
− 2|𝐴𝐶⃗⃗⃗⃗  ⃗||𝐴𝐵⃗⃗⃗⃗  ⃗|cos(𝐵𝐴𝐶) by the geometric definition of the dot product. 

Lecture 4: 

The Cauchy-Schwartz inequality says |𝑎. 𝑏| ≤ |𝑎||𝑏|, which is normally obvious in vector spaces ℝ𝑛 
since |𝑐𝑜𝑠𝑥| ≤ 1 for real x. However, we can prove this for more general vector spaces: 

We know |𝑥 − 𝑎𝑦|2 ≥ 0 for all a since the norm of a vector is always non-negative by definition. 
Therefore (𝑥 − 𝑎𝑦). (𝑥 − 𝑎𝑦) ≥ 0, so (𝑥. 𝑥) + 𝑎2(𝑦. 𝑦) − 2𝑎(𝑥. 𝑦) ≥ 0. Therefore                                                 
|𝑥|2 + 𝑎2|𝑦|2 − 2𝑎(𝑥. 𝑦) ≥ 0. This is a quadratic in a, and for it to always be positive it cannot have 2 
roots so the discriminant must be non-positive, therefore 4(𝑥. 𝑦)2 − 4|𝑥|2|𝑦|2 ≤ 0. Rearranging and 
taking the square root of both sides gives |𝑎. 𝑏| ≤ |𝑎||𝑏| as required. 

Also we have the triangle inequality: |𝑥 + 𝑦|2 = (𝑥 + 𝑦). (𝑥 + 𝑦) = |𝑥|2 + |𝑦|2 + 2(𝑥. 𝑦) ≤ (|𝑥| + |𝑦|)2 
by the previous inequality, thus |𝑥 + 𝑦| ≤ |𝑥| + |𝑦|. 

Definition: Vectors 𝑣1, 𝑣2, 𝑣3, … are linearly independent if 𝑎1𝑣1 + 𝑎2𝑣2 + ⋯𝑎𝑛𝑣𝑛 = 0 implies all the 
a’s are equal to 0. Ie, no vectors are a linear combination of the others. 

Definition: A basis for a vector space is a set of linearly independent vectors that span the vector 
space. A basis is often written as {𝑒1, 𝑒2, … } in general or {i, j, k} in the case of ℝ3. 

Note that the cross product is a thing specific to ℝ3. 



Recall some easy properties: 

𝑎 ⨯ 𝑏 = 0 if and only if 𝑎, 𝑏 are parallel. 

𝑐(𝑎 ⨯ 𝑏) = (𝑐𝑎 ⨯ 𝑏) = (𝑎 ⨯ 𝑐𝑏)  

𝑎 ⨯ (𝑏 + 𝑐) = 𝑎 ⨯ 𝑏 + 𝑎 ⨯ 𝑐  

𝑎 ⨯ 𝑏 = −𝑏 ⨯ 𝑎  

These can be shown by determinant properties as the cross product was interpreted as. 

|

𝑖 𝑎𝑖 𝑏𝑖

𝑗 𝑎𝑗 𝑏𝑗

𝑘 𝑎𝑘 𝑏𝑘

| = 𝑎 ⨯ 𝑏. 

Also, 𝑎. (𝑎 ⨯ 𝑏) since 𝑎 ⨯ 𝑏 is perpendicular to a, and because in fact (𝑎 ⨯ 𝑏). 𝑐 gives the volume of the 
parallelapiped spanned by a, b, c, and thus is zero exactly when a, b, c are coplanar. This is called the 
scalar triple product 

 To see this, here is a little picture, note that the volume of the parallelopiped is the area spanned by a 
and b times the component of c in the direction of axb. 

 

Lecture 5: 

Interpretation: A⨯X is X scaled by |a| and rotated 90 degrees in such a way as to be perpendicular to a. 

The lecturer also goes from (𝑎1𝑒1 + 𝑎2𝑒2 + 𝑎3𝑒3) ⨯ (𝑏1𝑒1 + 𝑏2𝑒2 + 𝑏3𝑒3) and uses the basic cross 
product properties above to reach the algebraic formula for the cross product. 

The vector triple product is defined as a⨯(b⨯c) and gives a vector perpendicular to a in the same 
plane as b and c. By expanding definitions it can be shown that a⨯(b⨯c)=b(a.c)-c(a.b), but we will give 
a nicer proof of this later. Note that a⨯(b⨯c) is not generally equal to (a⨯b)⨯c so we need to be 
careful. 

Recall that a line through a in the direction of u can be written as (r-a)⨯u=0 and that a plane through a 
with direction vectors u and v can be written as r.n=a.n with n=(u⨯v) and thus (r-a).(u⨯v)=0. 

Therefore, we can give a general formula for the intersection between a line and a plane by solving for 
r: 

(r-a)⨯u=0 by the line equation 



So ((r-a)⨯u)⨯n=0 by taking the cross product with n on both sides. Using antisymmetry twice so the 
sign cancels we get Using the formula for the vector triple product, we get that n⨯(u⨯(r-a))=0 

u(n.(r-a))-(r-a)(n.u)=0. 

Therefore, u(n.r)-r(n.u)=u(n.a)-a(n.u)=(a⨯u)⨯n. 

Let b be any point on the plane, then u(n.b)-r(n.u)=(a⨯u)⨯n so 𝑟 =
(𝑏.𝑛)𝑢−(a⨯u)⨯n

𝑢.𝑛
. 

Lecture 6: 

Lets also consider the shortest distance between 2 lines: Suppose the lines go through points 𝑎1, 𝑎2 
and have direction vectors 𝑢1, 𝑢2. Then the equation for the lines is 𝑢1 ⨯ (𝑟 − 𝑎1) = 0 and                   
𝑢2 ⨯ (𝑟 − 𝑎2) = 0. The shortest distance is in the direction perpendicular to both lines, so if they are 
not parallel this is the projection in the direction of 𝑢1 ⨯ 𝑢2 of  𝑎1 − 𝑎2. Thus the shortest distance 

between the lines is given by |(𝑎1 − 𝑎2).
(𝑢1⨯𝑢2)

|𝑢1⨯𝑢2|
|. 

Here is an example of solving for a vector: 

Say we want to solve for r where 𝑟 + 𝑎 ⨯ (𝑏 ⨯ 𝑟) = 𝑐. Then using the formula for the vector triple 
product, 

𝑟 + (𝑎. 𝑟)𝑏 − (𝑎. 𝑏)𝑟 = 𝑐 

𝑟. 𝑎 + (𝑎. 𝑟)𝑏. 𝑎 − (𝑎. 𝑏)𝑟. 𝑎 = 𝑐. 𝑎 

𝑟. 𝑎 = 𝑐. 𝑎 

Which is a plane through c perpendicular to a. We can substitute this into 𝑟 + (𝑎. 𝑟)𝑏 − (𝑎. 𝑏)𝑟 = 𝑐 

to get 𝑟 + (𝑎. 𝑐)𝑏 − (𝑎. 𝑏)𝑟 = 𝑐 so 𝑟 =
𝑐−(𝑎.𝑐)𝑏

1−(𝑎.𝑏)
. If a.b=1 then either 𝑐 − (𝑎. 𝑐)𝑏 is non zero so r is nothing 

or 𝑐 − (𝑎. 𝑐)𝑏 is zero meaning r is the full plane through c perpendicular to a. 

New definitions: 

An ordered set of vectors a, b, c is right handed if the scalar triple product is positive and left handed 
otherwise. 

Definition (kronecker delta) 𝛿𝑖𝑗 = {
1: 𝑖 = 𝑗
0: 𝑖 ≠ 𝑗

 

Definition (Levi civite symbol) 𝜀𝑖𝑗𝑘 = {

1: 𝑖, 𝑗, 𝑘⁡𝑖𝑠⁡𝑎𝑛⁡𝑒𝑣𝑒𝑛⁡𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛
0: 𝑖 = 𝑗⁡𝑜𝑟⁡𝑗 = 𝑘⁡𝑜𝑟⁡𝑘 = 𝑖

−1: 𝑖, 𝑗, 𝑘⁡𝑖𝑠⁡𝑎𝑛⁡𝑜𝑑𝑑⁡𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛
 

We have discussed what even and odd permutations are in groups. 

There is a convention with terms which are products involving these symbols. The convention 
(Einstein’s convention) is that if an index like i, j or k appears exactly twice in the expression we sum 
over the implied values – typically 1, 2 and 3. For example, if {𝑒1, 𝑒2, 𝑒3} is our basis, then 𝑒𝑖𝛿𝑖𝑗  has i 
exactly twice so it equals 𝑒1𝛿1𝑗 + 𝑒2𝛿2𝑗 + 𝑒3𝛿3𝑗. The only term that does not vanish is the term where 
i=j by the definition of the delta, and therefore 𝑒𝑖𝛿𝑖𝑗 = 𝛿𝑗. If an index appears more than twice, the 
convention is not used, but it is surprisingly useful to do it this way. 



Examples (I will not prove these since they are easy but tedious to check): 

- 𝑒𝑖. 𝑒𝑗 = 𝛿𝑖𝑗  
- 𝑎. 𝑏 = 𝛿𝑖𝑗𝑎𝑖𝑏𝑗  
- 𝑒𝑖 ⨯ 𝑒𝑗 = 𝜀𝑖𝑗𝑘𝑒𝑘 
- 𝑎 ⨯ 𝑏 = 𝑎𝑖𝑏𝑗𝑒𝑘𝜀𝑖𝑗𝑘 
- (𝑎 ⨯ 𝑏)𝑖 = 𝑎𝑗𝑏𝑘𝜀𝑖𝑗𝑘 (Note: this means the component of 𝑎 ⨯ 𝑏 in the direction of the basis 

vector i) 
- 𝑎. (𝑏 ⨯ 𝑐) = 𝑎𝑖𝑏𝑗𝑐𝑘𝜀𝑖𝑗𝑘 
- 𝛿𝑖𝑖 = 3 
- 𝜀𝑖𝑗𝑘𝜀𝑝𝑞𝑟 = 𝛿𝑖𝑝𝛿𝑗𝑞𝛿𝑘𝑟 + 𝛿𝑖𝑞𝛿𝑗𝑟𝛿𝑘𝑝 + 𝛿𝑖𝑟𝛿𝑗𝑝𝛿𝑘𝑞 − 𝛿𝑖𝑝𝛿𝑗𝑟𝛿𝑘𝑞 − 𝛿𝑖𝑞𝛿𝑗𝑝𝛿𝑘𝑟 − 𝛿𝑖𝑟𝛿𝑗𝑞𝛿𝑘𝑝 
- 𝜀𝑖𝑗𝑘𝜀𝑝𝑞𝑘 = 𝛿𝑖𝑝𝛿𝑗𝑞 − 𝛿𝑖𝑞𝛿𝑗𝑝 
- 𝜀𝑖𝑗𝑘𝜀𝑝𝑗𝑘 = 2𝛿𝑖𝑝 
- 𝜀𝑖𝑗𝑘𝜀𝑖𝑗𝑘 = 6 

We will use this to show that a⨯(b⨯c)=b(a.c)-c(a.b). Consider the component of a⨯(b⨯c) in the 
direction of a basis vector such as i, then (using the identites above and doing algebra) we get 

[𝑎 ⨯ (b ⨯ c)]i = 𝜀𝑖𝑗𝑘[𝑎𝑗(𝑏 ⨯ c)k] = 𝜀𝑖𝑗𝑘[𝑎𝑗𝑏𝑝𝑐𝑞𝜀𝑝𝑞𝑘] = (𝛿𝑖𝑝𝛿𝑗𝑞 − 𝛿𝑖𝑞𝛿𝑗𝑝)[𝑎𝑗𝑏𝑝𝑐𝑞] 

Note that j looks like it appears 3 times but it only appears 2 times in each term when we expand it out 
so it is fine. 

= 𝛿𝑖𝑝𝛿𝑗𝑞𝑎𝑗𝑏𝑝𝑐𝑞 − 𝛿𝑖𝑞𝛿𝑗𝑝𝑎𝑗𝑏𝑝𝑐𝑞 = 𝑎𝑗𝑏𝑖𝑐𝑗 − 𝑎𝑗𝑏𝑗𝑐𝑖 = (𝑎. 𝑐)𝑏𝑖 − (𝑎. 𝑏)𝑐𝑖 so done. This is much more 
compact then if we were to expand the vectors out, here is an image to show what that looked like: 

 

Lecture 7: 

Another example of using the summation convention to prove an identity: 

(𝑎 ⨯ b). (b ⨯ c) = (a ⨯ b)i(𝑏 ⨯ c)i = 𝜀𝑖𝑗𝑘𝑎𝑗𝑏𝑘𝜀𝑖𝑝𝑞𝑏𝑝𝑐𝑞 = (𝛿𝑗𝑝𝛿𝑘𝑞 − 𝛿𝑗𝑞𝛿𝑘𝑝)𝑎𝑗𝑏𝑘𝑏𝑝𝑐𝑞

= 𝑎𝑗𝑏𝑘𝑏𝑗𝑐𝑘 − 𝑎𝑗𝑏𝑘𝑏𝑘𝑐𝑗 = (𝑎. 𝑏)(𝑏. 𝑐) − (𝑎. 𝑐)(𝑏. 𝑏) 

Now suppose we have a unit sphere with points a, b and c on the sphere. Then 𝑎. 𝑏 = cos(𝛿(𝑎, 𝑏)) 
where 𝛿(𝑎, 𝑏) means the arc length from a to b. 

Now note that 𝑎⨯b

|a⨯b|
 and 𝑎⨯c

|a⨯c|
 are unit vectors perpendicular to the planes through AOB and AOC 

respectively, so the cosine of the angle between them equals the cosine of the angle between the arcs 
AB and AC. However, |a ⨯ b| = |𝑎||𝑏| sin(𝐴𝑂𝐵) = sin(𝛿(𝑎, 𝑏)). However, the cosine between two unit 

vectors is the dot product, so if α is the angle between the arcs then cos(𝛼) =
(𝑎⨯b).(a⨯c)

sin(𝛿(𝑎,𝑏)) sin(𝛿(𝑎,𝑐))
=



|𝑎|2(𝑏.𝑐)−(𝑎.𝑐)(𝑏.𝑎)

sin(𝛿(𝑎,𝑏)) sin(𝛿(𝑎,𝑐))
 by the above identity. However, 𝑎. 𝑏 = cos(𝛿(𝑎, 𝑏)) and similarly for a.c and b.c so 

cos(𝛼) =
cos(𝛿(𝑏,𝑐))−cos(𝛿(𝑎,𝑏))cos(𝛿(𝑏,𝑐))

sin(𝛿(𝑎,𝑏)) sin(𝛿(𝑎,𝑐))
. 

Definition: 𝜀𝑖𝑗𝑘…𝑙  if the indices range from 1 to n where n is the number of indices is 0 if any 2 are the 
same, 1 if it is an even permutation and -1 if it is an odd permutation. See Lecture 13 for what this 
means and why it is well defined. This is the generalized epsilon. 

Example: The determinant of a 2x2 matrix (
𝑎1 𝑏1

𝑎2 𝑏2
) is 𝜀𝑖𝑗𝑎𝑖𝑏𝑗. In fact, higher order determinants use 

the same general formula. 

Lecture 8: 

Definition (Inner product): This is basically the dot product. (a,b) is an inner product if it satisfies: 

- (a,a) is non-negative and always real 
- (a,b) is always the complex conjugate of (b,a) (Note that this means that in the real number 

case we have symmetry) 
- (𝑧, 𝑐𝑤 + 𝑐’𝑤’) = 𝑐(𝑧, 𝑤) + 𝑐’(𝑧, 𝑤’) 

- (𝑐𝑤 + 𝑐’𝑤’, 𝑧) = 𝑐(𝑤, 𝑧) + 𝑐′(𝑤′, 𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

Definition: A basis is orthonormal if 𝑒𝑖. 𝑒𝑗 = 𝛿𝑖𝑗  – ie each basis vector has magnitude 1 and is 
perpendicular to the rest. 

Defintion: A real vector space has multiplication only by real numbers. A complex vector space has 
multiplication by real or complex numbers. The real vector space defined by ℂ𝑛  actually has 
dimension 2n because we need the basis (1,0,0…), (i,0,0,…), (0,1,0,…), (0,i,0,…), etc. We will prove 
soon that dimension is actually unique. 

Definition: A subspace is a subset of a vector space that is also a vector space. For a space to be a 
subspace, we need that for any vectors v and w their span (ie all linear combinations) is in the 
subspace. V itself and {0} are trivial subspaces of any vector space V. 

More on linearly independent vectors: 

Example: (3, -1, 2), (1, 0, 1) and (5, -2, 3) are not linearly independent because                                                
(5, -2, 3)=2(3, -1, 2)-(1, 0, 1). However the set (3,0,0), (4,1,3) and (2,0,1) are linearly independent. This 

can be checked: |
3 4 2
0 1 0
0 3 1

| = 3 so the vectors span three dimensions (geometrically). Note that 

vectors being pairwise linearly independent is not enough. However (geometrically), mutually 
perpendicular vectors in real vector spaces are linearly independent. 

Proof: Let (𝑣1, 𝑣2, … , 𝑣𝑛) be mutually perpendicular and non-zero. Then (𝑣𝑗 , ∑ 𝑎𝑖𝑣𝑖) = ∑𝑎𝑖 (𝑣𝑗 , 𝑣𝑖) (but 

unless i=j, the terms are 0), so we get = ∑𝑎𝑗 (𝑣𝑗 , 𝑣𝑗) = ∑𝑎𝑗 |𝑣𝑗|
2

, so if the sum is 0 all a’s must be 0 
since they are being multiplied by positive things, so the v’s satisfy the definition of linearly 
independent. 

Defintion: The dimension of a vector space is the number of basis vectors that span the vector space. 
However, we need to show that this is the same regardless of which basis we use. 



Proof: (Credit: Google images – Image below shows proof) 

 

Therefore, suppose we have a basis with X vectors and another one with Y vectors for the same vector 
space, and suppose X<Y (since if Y<X we could apply similar logic without loss of generality): Then the 
Y basis is linearly independent and the X basis spans the vector space, but X<Y so this contradicts the 
theorem above. 

Of course, if we have a set that spans a vector space we can remove redundant ones to get a basis. 
Also, if we have a set that does not span a vector space, we can add new ones until it does then 
remove redundant ones. 

Lecture 9: 

Consider a map from a bunch of numbers to a bunch of other numbers. Sort of like this image below 
from google images where each arrow has a weight and the output is the weighted sum. 

 

This is called a linear map, and you can see that this is equivelent to multiplying the left hand side as a 
vector on the left by a matrix with entries equal to the weights of the arrows in the corresponding 
positions. In fact, matrices of a fixed size are elements of a vector space since they satisfy all the 
elements of a vector space. You can think of a matrix as a map from one vector space to anoyher 
vector space. 

Definition: The image of a matrix is the set of vectors that get mapped to. The rank of a matrix is the 
dimension of the image. The kernel of a matrix is the set of vectors in the domain that map to zero. 
The nullity or null space of a matrix is the dimension of the kernel. Kernels and images are closed 



under adding or subtracting them and stuff and contain the origin so they do form vector spaces – this 
is important to know. 

Theorem (Rank-Nullity theorem): If we have an nxn matrix, then its rank plus its nullity equals n. 

Proof: This is a direct consequence of the isomorphism theorem which we learn in the Groups course. 
This is because if we consider our matrix to be a homomorphism between our vector spaces as 
groups under addition, then the vector space we are mapping to is isomorphic to the direct product of 
the kernel and the image, and therefore the sum of the dimensions of the kernel and the image is n. 

Note: This is obvious if you consider volume, but a square matrix maps to the entire vector space if 
and only if its determinant is non-zero. Also, since such a matrix is invertible we can use its inverse to 
find the pre-image of any vector. 

Note: A matrix can be interpreted as a list of vectors where each row represents a vector, or where 
each column represents a vector. Ie 

: : … :
𝐶1 𝐶2 … 𝐶𝑛

: : … :
 

And similarly for rows. 

Note that the span of the columns of a matrix is the column space or span of a matrix. This is also 
equivelent to the image of the matrix, since the image is exactly linear combinations of the columns 
with coefficients equal to the entries we are multiplying the matrix by. 

Lecture 10: 

We note that multiplying a matrix by a column vector like (0,0,…,0,1,0,…,0,0) essentially extracts a 
column from the matrix. 

We note also that 𝑀𝑥 = (

𝑅1. 𝑥
𝑅2. 𝑥

:
𝑅𝑛. 𝑥

). This is easy to check, where the R’s are the rows of M. 

Therefore, it follows that 𝑀𝑥 = 0 when x is a vector perpendicular to all rows of the matrix. 

Example: The rank of (
3 1 5

−1 0 −2
2 1 3

) is 2 because 

- It is not 0 since 0 is clearly not the image 
- It is not 1 since all columns do not lie on the same line 
- It is not 3 since the determinant is 0. 

Therefore, by rank nullity, its kernel must be a line. 

Definition: In 2D, 𝑅𝑜𝑡(𝜃) is a matrix representing a rotation by an angle 𝜃 anticlockwise. In fact, by 

checking where (0,1) and (1,0) go we see that 𝑅𝑜𝑡(𝜃) = (
cos⁡(𝜃) −sin⁡(𝜃)
sin⁡(𝜃) cos⁡(𝜃)

). This is known from A 

level. Similarly, we define 𝑅𝑒𝑓(𝜃) as the matrix representing a reflection about the line which is an 



angle 𝜃
2

 anticlockwise from  (1, 0). If you check carefully where basis vectors go, we see that 𝑅𝑜𝑡(𝜃) =

(
cos⁡(𝜃) sin⁡(𝜃)

sin⁡(𝜃) −cos⁡(𝜃)
). We can try multiplying them together in different ways: 

- 𝑅𝑜𝑡(𝜃)𝑅𝑜𝑡(𝜙) = 𝑅𝑜𝑡(𝜃 + 𝜙). I think this is obvious if you think about it. 

- 𝑅𝑒𝑓(𝜃)𝑅𝑒𝑓(𝜙) = (
cos⁡(𝜃) sin⁡(𝜃)
sin⁡(𝜃) −cos⁡(𝜃)

) (
cos⁡(𝜙) sin⁡(𝜙)
sin⁡(𝜙) −cos⁡(𝜙)

) = (
cos⁡(𝜃 − 𝜙) −sin⁡(𝜃 − 𝜙)
sin⁡(𝜃 − 𝜙) cos⁡(𝜃 − 𝜙)

) =

𝑅𝑜𝑡(𝜃 − 𝜙) where I have used trigonometric addition formulae which are known from A level. 

- 𝑅𝑒𝑓(𝜃)𝑅𝑜𝑡(𝜙) = (
cos⁡(𝜃) sin⁡(𝜃)
sin⁡(𝜃) −cos⁡(𝜃)

) (
cos⁡(𝜙) −sin⁡(𝜙)
sin⁡(𝜙) cos⁡(𝜙)

) = (
cos⁡(𝜃 − 𝜙) sin⁡(𝜃 − 𝜙)
sin⁡(𝜃 − 𝜙) −cos⁡(𝜃 − 𝜙)

) =

𝑅𝑒𝑓(𝜃 − 𝜙) 

- 𝑅𝑜𝑡(𝜃)𝑅𝑒𝑓(𝜙) = (
cos⁡(𝜃) −sin⁡(𝜃)
sin⁡(𝜃) cos⁡(𝜃)

) (
cos⁡(𝜙) sin⁡(𝜙)
sin⁡(𝜙) −cos⁡(𝜙)

) = (
cos⁡(𝜃 + 𝜙) sin⁡(𝜃 + 𝜙)
sin⁡(𝜃 + 𝜙) −cos⁡(𝜃 + 𝜙)

) =

𝑅𝑒𝑓(𝜃 + 𝜙). 

In 3 dimensions, a rotation of an angle 𝜃 anticlockwise about a unit vector n is given by a formula 
which we will derive next lecture. The formula says that a vector x is mapped to 

cos(𝜃) 𝑥 + (1 − cos(𝜃))(𝑛. 𝑥)𝑛 + (sin(𝜃))(𝑛 ⨯ 𝑥). 

A matrix representing a reflection around a space A is given by 𝐼 − 2𝐴𝐴𝑇  where A consists of columns 
of normalized vectors that are perpendicular and span A. The reason is that the formula for an 
orthogonal projection onto A is known to be 𝐼 − 𝐴𝐴𝑇  as I show shortly, and it should make sense that 
an orthogonal projection moves a vector halfway from its original position to its reflected position. 

We are in ℝ𝑛 (n dimensional vector space of reals) and for m<n there is an m-dimensional plane 
centered at the origin, then we can rotate the space around so that the first m basis vectors are in our 
plane, then consider where the rest of the basis vectors were before we did the rotation: Intuitively, we 
are considering a basis for vectors perpendicular to this plane. If S is a n*(n-m) matrix where each 
column of s is one of these vectors, we want to show that 𝐼 − 𝑆𝑆𝑇  projects any vector onto the m-
dimensional plane. To do this, we just need to show three things: 

1. A vector when this linear transformation is applied to it moves orthogonally to the direction of 
the plane 

2. Any vector ends up on the plane after the transformation 

Consider a vector v, then (𝐼 − 𝑆𝑆𝑇)𝑣 = 𝐼𝑣 − 𝑆𝑆𝑇𝑣 = 𝑣 − 𝑆𝑆𝑇𝑣 

Condition 1: Orthogonality 

The vector moves by 𝑆𝑆𝑇𝑣. Therefore we want to show that (𝑆𝑆𝑇𝑣). 𝑢 = 0 if u is on the plane. This is 
the same as (𝑆𝑆𝑇𝑣)𝑇𝑢 = 𝑣𝑇𝑆𝑆𝑇𝑢. But we know 𝑆𝑇𝑢 is 0 since we are assuming u is on the plane (so all 
columns of S as a dot product with v return 0 so the result follows), so the whole thing becomes 0. So 
done. 

Condition 2: A vector ends up on the plane after the transformation 

We want to show (𝐼 − 𝑆𝑆𝑇)𝑣 ends up on the plane. Since the plane is defined by 𝑆𝑇𝑢 is 0 if u is on the 
plane, we want to show that 𝑆𝑇(𝐼 − 𝑆𝑆𝑇)𝑣 = 0. This is equal to 𝑆𝑇𝑣 − 𝑆𝑇𝑆𝑆𝑇𝑣 = (𝐼 − 𝑆𝑇𝑆)𝑆𝑇𝑣. 



Now what does 𝑆𝑇𝑆 equal? It will be an (n-m)x(n-m) matrix where the i,j entry is equal to 𝑠𝑖. 𝑠𝑗. Since 
the s’s are orthogonal unit vectors, this will be 1 when i=j and 0 otherwise, so we get the identity 
matrix. Therefore 𝐼 − 𝑆𝑇𝑆 = 0. So done. 

Now suppose B is a matrix where the columns are vectors that form an orthonormal basis of the plane 
(Essentially this means what you would expect: Where the basis vectors on the plane were before the 
rotation). Then 𝐼 − 𝐵𝐵𝑇 is the projection matrix onto the space perpendicular to the plane, since it is 
essentially the same idea with S and B being renamed to eachother, as they are both matricies with 
perpendicular columns within them and between them. Now a vector v decomposes into vectors 𝑣𝑠 
and 𝑣𝑏, where 𝑣𝑏  is the component of v in the direction of the plane, and 𝑣𝑠 is the component of v 
perpendicular to the plane. So (𝐼 − 𝐵𝐵𝑇)𝑣 = 𝑣𝑠  and (𝐼 − 𝑆𝑆𝑇)𝑣 = 𝑣𝑏, so                                                       
(𝐼 − 𝐵𝐵𝑇)𝑣 +⁡(𝐼 − 𝑆𝑆𝑇)𝑣 = 𝑣𝑠 + 𝑣𝑏 = 𝑣 . So(2𝐼 − 𝐵𝐵𝑇 − 𝑆𝑆𝑇)𝑣 = 𝑣. Since this is true for all v, we 
must have that 𝐼 = 2𝐼 − 𝐵𝐵𝑇 − 𝑆𝑆𝑇  so 𝐼 = 𝐵𝐵𝑇 + 𝑆𝑆𝑇. What I have proven is that if B and S are 
matricies whose columns together form a basis for a vector space with all vectors perpendicular to 
eachother then 𝐼 = 𝐵𝐵𝑇 + 𝑆𝑆𝑇. Alternatively, I have shown that if B forms a basis for the plane with all 
vectors in B perpendicular to eachother, then 𝐵𝐵𝑇 gives a projection onto the plane. 

Lecture 11: 

Now we will derive the rotation formula as promised. We can write 𝑥 = 𝑥𝑛 + 𝑥𝑝 where 𝑥𝑛 is the 
component of x parallel to n and 𝑥𝑝 is the component of x perpendicular to n. Since |n|=1, we know 
that 𝑥𝑛 = |𝑥| cos(𝑛𝑂𝑥)𝑛 = (𝑛. 𝑥)𝑛. Also 𝑥𝑝 = 𝑥 − 𝑥𝑛. We know that when x is rotated about n, the 𝑥𝑛 
component will not change at all since anything parallel to n does not move when rotated about n. 
Now we must work out what happens to 𝑥𝑝. It is rotated by ϑ about n, so it must have a part equal to 
cos(𝜃) 𝑥𝑝 and a part equal to sin(𝜃) 𝑦 where y is an anticlockwise rotation of x about n. Now consider 
n⨯x: By the right (left? I’m not sure it doesn’t matter) hand rule, this is perpendicular to n and a 90 
degree rotation anticlockwise from x, and its magnitude is exactly |n||x|sin(nOx) which is |x| since the 
other terms in the product are 1. This means n⨯x is exactly the y vector which we need. Therefore, x is 
mapped to 𝑥𝑛 + 𝑥𝑝 𝑐𝑜𝑠(𝜃) + 𝑠𝑖𝑛(𝜃) (𝑛 ⨯ 𝑥) = (𝑛. 𝑥)𝑛 + (𝑥 − (𝑛. 𝑥)𝑛) 𝑐𝑜𝑠(𝜃) + 𝑠𝑖𝑛⁡(𝜃)(𝑛 ⨯ 𝑥). 
Rearranging gives the desitred formula. 

In fact, it turns out that any rotation in 3 dimensions that moves the 3 basis vectors to any other 
orthonormal right handed set can be written as the product of 3 rotations about the axes. Here is why: 

Here is how: We rotate about the x axis first to move the z axis vector to have the correct final height. 
We then rotate about the original z axis to make this vector be in the correct final position. The x and y 
vectors may be wrong, but we can pre-rotate them about the z axis before doing these other 2 
rotations such that they end up in the correct place. 

Definition: Suppose a and b are perpendicular and |a|=|b|=1. Then a shear is a matrix which sends x to 
x+λa(x.b). Basically, this leaves a unchanged and moves b by λa units. 

This image from google below shows an example of a shear where we leave the x axis unchanged and 
slightly shift the y axis over. 



 

Also, here is an example of the principle of a matrix being a linear map between vector spaces: 
Consider a map from the vector space of 2x2 matrices to 3x1 vectors (ie, ℝ3). Suppose the map 

always sends (𝑎 𝑏
𝑐 𝑑

) → (
𝑎 + 𝑏

𝑐
𝑑

). Then we have to write our matrix as a column vector: (

𝑎
𝑏
𝑐
𝑑

). Then the 

matrix that sends this to (
𝑎 + 𝑏

𝑐
𝑑

) is (This can be easily checked, since a map is defined in the matrix 

multiplication sense) (
1 1 0 0
0 0 1 0
0 0 0 1

). 

An important idea is that this map is really matrix multiplication is the same as composing maps. This 
is because if A: V -> W and B: W->S then AB is the map (A∘B) from V to S, where V, W and S are vector 
spaces. This works like this due to matrix multiplication being associative: (AB)X=A(BX) if X is a vector 
in our starting vector space V. 

Lecture 12: 

Matrix multiplication can be interpreted by the summation convention as follows: if L=MN then     
𝐿𝑖𝑘 = 𝑀𝑖𝑗𝑁𝑗𝑘. Also, we can see that 𝐿𝑖𝑘 is the dot product of the i’th row of M with the k’th column of N. 
In fact, associativity of multiplication follows directly from this: 𝐴𝑖𝑗(𝐵𝑗𝑘𝐶𝑘𝑙) = (𝐴𝑖𝑗𝐵𝑗𝑘)𝐶𝑘𝑙. 

Note that a left inverse of a square matrix is the same as a right inverse with the same proof as at the 
beginning of groups. We were able to see that this was the case in the Level 6 matrix video. 

Some obvious properties: An inverse of a rotation is a rotation in minus the angle. Reflections are self 
inverse. An inverse of a shear is a shear the opposite way. 

Definition: The hermitian conjugate of a matrix is the complex conjugate of its transpose. This is 
denoted 𝑀†. 

Definition: A matrix is antisymmetric if 𝑀𝑇 = −𝑀. This actually constrains the matrix a lot – All 
diagonal entries in an antisymmetric matrix have to be 0. 

Definition: The trace of a square matrix is the sum of the elements along the diagonal. By the 
summation convention we can write 𝑇𝑟(𝑀) = 𝑀𝑖𝑖. By considering the characteristic equation we can 
see that the trace equals the sum of the eigenvalues. 

Proposition: 𝑇𝑟(𝑀𝑁) = 𝑇𝑟(𝑁𝑀). Proof: (𝑀𝑁)𝑖𝑖 = 𝑀𝑖𝑘𝑁𝑘𝑖 = 𝑁𝑘𝑖𝑀𝑖𝑘 = (𝑁𝑀)𝑘𝑘 (summation convention 
used). 

Proposition: Any matrix with real entries is a sum of antisymmetric parts. 

Proof: Set 𝑆 =
1

2
(𝑀 + 𝑀𝑇), 𝐴 =

1

2
(𝑀 − 𝑀𝑇). It is easy to see that S is symmetric, A is antisymmetric, 

and S+A=M. 



S can be further decomposed into 𝑇 ≔ 𝑆 −
1

𝑛
𝑇𝑟(𝑆)𝐼 and 1

𝑛
𝑇𝑟(𝑆)𝐼. Note that the trace of T is 0 by how 

we constructed T. 

Therefore, M has been decomposed into a symmetric traceless matrix, an antisymmetric matrix and a 
multiple of the identity matrix. 

Lecture 13: 

We have seen in Level 6 in the section on symmetric matrices a dot product argument for why a matrix 
U is orthogonal if and only if 𝑈𝑈𝑇 = 𝑈𝑇𝑈 = 𝐼, ie the columns and rows of U are orthonormal. 
Orthogonal matrices are defined to be only real-valued matrices with this property. 

Also, (𝑈𝑥). (𝑈𝑦) = 𝑥. 𝑦 if U is orthogonal: This is because if U is orthogonal it is essentially a rotation, 
meaning the lengths and angles – and thus the dot product – are unchanged. 

Definition: A complex n*n matrix is unitary if its inverse equals its hermitian conjugate. This is a 
generalization of orthogonal matrices. If U is unitary, we have, using the complex version of the dot 
product, that (𝑈𝑧). (𝑈𝑤) = (𝑈𝑧)†(𝑈𝑤) = 𝑧†𝑈†𝑈𝑤 = 𝑧†𝑤 = 𝑧. 𝑤. 

Example: If 𝑈 (
1
0
) = (

cos⁡(𝜃)

sin(𝜃)
), then 𝑈 (

0
1
) = ±(

−sin⁡(𝜃)

cos(𝜃)
). Basically, angles and lengths must be 

preserved for unitary matrices, but not orientation. 

Example: The determinant of a 3*3 matrix M can be written in index notation as 𝜀𝑖𝑗𝑘𝑀1𝑖𝑀2𝑗𝑀3𝑘. For 
higher size matrices, the determinant can indeed be written as 𝜀𝑖𝑗𝑘…𝑙𝑀1𝑖𝑀2𝑗𝑀3𝑘 …𝑀𝑛𝑙  using the 
generalized epsilon. The fact that the three dimensional case of the determinant is the volume was 
proven in Level 6, and the higher dimensional case uses the same proof provided we have well 
defined-ness of the sign of the permutation as a theorem. We will prove this later in the lecture. 

It is easy to see that matrix columns are all linearly independent if and only if the determinant is non-
zero. 

Proof: If the determinant is zero, then everything is confined to a lower dimension by the volume 
property, and therefore they cannot be spanned by n linearly independent vectors. Conversely, if the 
matrix has columns all linearly independent then it has full rank (so it is surjective) and thus trivial 
kernel, and therefore it is injective (Since if two vectors mapped to the same thing under the matrix 
then the difference would be in the kernel and thus would be 0). Therefore, if the matrix has linearly 
independent columns, it is a bijection, and thus is invertible, and thus has non-zero determinant, 
since if it had zero determinant it would not be invertible as that would involve dividing by 0 which is a 
contradiction. 

Notation for permutations: 

Consider the permutation (1 2 3 4 5 6
5 6 3 1 4 2

) where the bottom row shows what the elements of 

the top row get mapped to. Then let’s trace it: 

1 maps to 5 which maps to 4 which maps to 1 so we’re back to where we started. 

2 maps to 6 which maps to 2 so we’re back to where we started. 

3 maps to itself. Now we have considered all the elements. 



So, a convention is we can write (1 2 3 4 5 6
5 6 3 1 4 2

) as (1⁡5⁡4)(2⁡6), ie as a list of the cycles 

described above with the fixed points (like 3) omitted. 

Note that we can get the cycle (1⁡5⁡4) by swapping 4 with 5 then swapping 5 with 1. In general, we can 
get a cycle (𝑎1⁡𝑎2 …𝑎𝑛) by swapping 𝑎𝑛 with 𝑎𝑛−1, then 𝑎𝑛−1 with 𝑎𝑛−2, and so on until we swap 𝑎2 
with 𝑎1. You can try to trace in your head where anything would get mapped to in order to convince 
yourself of this. 

Definition: The sign of a permutation is 1 if it is the product of an even number of swaps and -1 if it is 
the product of an odd number of swaps. This is equal to the generalized epsilon. We need to show that 
this is well defined: We cannot get to a permutation in an even number of swaps and get to the same 
permutation in an odd number of swaps. 

Proof: The idea is a formula exists based on a permutation which changes sign every time we swap 
two elements, meaning the parity (ie odd-or-even-ness) of how many swaps we did is fixed. We can 
define the Vandermonde polynomial as 𝑃(𝑥1, 𝑥2, … 𝑥𝑛) = ∏ (𝑥𝑖 − 𝑥𝑗)1≤𝑖<𝑗≤𝑛 . So, for example, 
𝑃(1,2,3) = (1 − 2)(1 − 3)(2 − 3) = −2. Now consider that happens when we swap two elements: 
𝑃(𝑥1, 𝑥2, … , 𝑥𝑟 , … , 𝑥𝑠, … , 𝑥𝑛) has a certain value, and 𝑃(𝑥1, 𝑥2, … , 𝑥𝑠 , … , 𝑥𝑟 , … , 𝑥𝑛) has all terms in the 
product not involving 𝑥𝑟  and 𝑥𝑠 unchanged. Lets look at what the product of terms involving r and s are 
in the first and second polynomial. 

FIRST ONE: 

(𝑥𝑟 − 𝑥1)(𝑥𝑟 − 𝑥2)… (𝑥𝑟 − 𝑥𝑟−1)(𝑥𝑟+1 − 𝑥𝑟)… (𝑥𝑠 − 𝑥𝑟)… (𝑥𝑛 − 𝑥𝑟)(𝑥𝑠 − 𝑥1)(𝑥𝑠 − 𝑥2)… (𝑥𝑠 − 𝑥𝑟−1)(𝑥𝑠 − 𝑥𝑟+1)… (𝑥𝑠 − 𝑥𝑠−1)(𝑥𝑠+1 − 𝑥𝑠)… (𝑥𝑛 − 𝑥𝑠) 

Where I have been careful to not include the 𝑥𝑠 − 𝑥𝑟  term twice. 

SECOND ONE: 

(𝑥𝑠 − 𝑥1)(𝑥𝑠 − 𝑥2)… (𝑥𝑠 − 𝑥𝑟−1)(𝑥𝑟+1 − 𝑥𝑠)… (𝑥𝑠−1 − 𝑥𝑠)(𝑥𝑟 − 𝑥𝑠)(𝑥𝑠+1 − 𝑥𝑠)… (𝑥𝑛 − 𝑥𝑠)(𝑥𝑟 − 𝑥1)(𝑥𝑟 − 𝑥2)… (𝑥𝑟 − 𝑥𝑟−1)(𝑥𝑟 − 𝑥𝑟+1)… (𝑥𝑟 − 𝑥𝑠−1)(𝑥𝑠+1 − 𝑥𝑟)… (𝑥𝑛 − 𝑥𝑟) 

Now let’s cancel terms that are shared to try to see what the ratio is: 

The ratio is 
(𝑥𝑟+1−𝑥𝑟)…(𝑥𝑠−𝑥𝑟)(𝑥𝑠−𝑥𝑟+1)…(𝑥𝑠−𝑥𝑠−1)

(𝑥𝑟+1−𝑥𝑠)…(𝑥𝑠−1−𝑥𝑠)(𝑥𝑟−𝑥𝑠)(𝑥𝑟−𝑥𝑟+1)…(𝑥𝑟−𝑥𝑠−1)
 . Let’s write this as follows: 

(𝑥𝑟+1−𝑥𝑟)…(𝑥𝑠−1−𝑥𝑟)(𝑥𝑠−𝑥𝑟)(𝑥𝑠−𝑥𝑟+1)…(𝑥𝑠−𝑥𝑠−1)

(𝑥𝑟−𝑥𝑟+1)…(𝑥𝑟−𝑥𝑠−1)(𝑥𝑟−𝑥𝑠)(𝑥𝑟+1−𝑥𝑠)…(𝑥𝑠−1−𝑥𝑠)
= (−1)1+2(𝑠−1−𝑟) = −1. So if f is a permutation of                    

(1, 2, 3, … ,n), we can define sign(f) as 𝑃
(𝑓(1),𝑓(2),𝑓(3),…,𝑓(𝑛))

𝑃(1,2,3,…,𝑛−1,𝑛)
, and this is the same as the definition of the 

sign given above. Therefore this is well defined, so done. 

Lecture 14: 

Definition: A function F of multiple vectors is multilinear if when you fix all but one vectors and treat F 
as a function of the remaining vector, 𝐹(𝑎𝑉 + 𝑏𝑊) = 𝑎𝐹(𝑉) + 𝑏𝐹(𝑊) for all a,b,V,W. An example of 
this is the determinant as a function of the columns of a matrix – We demonstrated why this is the 
case in the Level 6 matrix video. Multilinear means the same thing even if these are not vectors. 
Bilinear means multilinear in the case there are two arguments to the function. 

F is totally antisymmetric if swapping two arguments changes the sign (ie multiplies it by -1). We are 
essentially writing names for the determinant properties I showed in that video. 



Alternative proof that linear dependence implies zero determinant which is more algebraic. We are 
doing this because one of the aims of this course is to have you thinking about the connection 
between the algebraic and geometric side of things: 

If the columns are linearly dependent, some column is a linear combination of the others. So we can 
write 𝐶𝑝 = ∑𝐶𝑖𝜆𝑖 . Since subtracting one column from another does not change the determinant, we 
can subtract 𝜆𝑖 times all the non-p columns from the p’th column to get the p’th column to be 0. So 
the determinant is 0. 

Proposition: For an n*n matrix M, det(𝑎𝑀) = 𝑎𝑛det⁡(𝑀). The reason is because if we multiply each of 
the columns by a, we multiply the determinant of M by a n times, and thus by 𝑎𝑛. 

Proposition: The detrminant of a matrix equals the determinant of its transpose. This is because if 
i,j,k,…l is a permutation, we can take det⁡(𝑀) = 𝜀𝑖𝑗𝑘…𝑙𝑀1𝑖𝑀2𝑗𝑀3𝑘 …𝑀𝑛𝑙. Then                              
det⁡(𝑀𝑇) = 𝜀𝑖𝑗𝑘…𝑙𝑀𝑖1𝑀𝑗2𝑀𝑘3 …𝑀𝑙𝑛 by definition of the transpose. Now we can apply the inverse of the 
permutation i,j,k,…l to all the matrix indices in 𝜀𝑖𝑗𝑘…𝑙𝑀𝑖1𝑀𝑗2𝑀𝑘3 …𝑀𝑙𝑛 since we will sum over the same 
terms. that is just reordering the terms, then this will give us 𝜀𝑖′𝑗′𝑘′…𝑙′𝑀1𝑖′𝑀2𝑗′𝑀3𝑘′ …𝑀𝑛𝑙′. The sign of 
the inverse permutation that maps 1, 2, 3, … ,n to i’, j’, k’, … l’ is the same as the sign of the starting 
permutation which is why I can prime everything in the epsilon symbol. But summing over i’, j’, k’, …, l’ 
gives the same result as summing over i,j,k, …, l. So done. 

Remark: Now everything we did for columns of matrices hold equally for rows. It follows that it is the 
case that the rows of a square matrix are linearly independent if and only if the columns are by 
considering the determinant. And adding a multiple of a row of a matrix to another row does not 
change the determinant. 

Proposition: Det(MN)=Det(M)Det(N). This is obvious by the volume property, but next lecture we will 
give an algebraic proof. 

Geometrically, if M is orthogonal, its determinant is 1 or -1. Also, since its inverse equals its transpose, 
the determinant of its transpose must equal the reciprocal of the determinant, so the determinant 
equals its own reciprocal so it must be -1 or 1. 

If M is unitary, then its inverse is the complex conjugate of the transpose of M, so the determinant is 
the complex conjugate of the determinant of M. Multiplying this by the determinant of M must give 1 
since M times its hermitian cnojugate is the identity, so det(M) has modulus 1. 

Lecture 15: 

Note that swapping columns of a matrix n times multiplies the determinant by (−1)𝑛. 

𝐷𝑒𝑡(𝑀𝑁) = ∑ 𝜀(𝜎)(𝑀𝑁)𝜎(1)1(𝑀𝑁)𝜎(2)2(𝑀𝑁)𝜎(3)3 …(𝑀𝑁)𝜎(𝑛)𝑛

𝜎∈𝑆𝑛

= ∑ 𝜀(𝜎) ∑ 𝑀𝜎(1)𝑘1
𝑁𝑘11𝑀𝜎(2)𝑘2

𝑁𝑘22𝑀𝜎(3)𝑘3
𝑁𝑘33 …𝑀𝜎(𝑛)𝑘𝑛

𝑁𝑘𝑛𝑛

𝑛

𝑘1,𝑘2,𝑘3…𝑘𝑛=1𝜎∈𝑆𝑛

= 

∑ 𝜀(𝜎)𝑁𝑘11𝑁𝑘22𝑁𝑘33 …𝑁𝑘𝑛𝑛

𝑛

𝑘1,𝑘2,𝑘3…𝑘𝑛=1

∑ 𝑀𝜎(1)𝑘1
𝑀𝜎(2)𝑘2

𝑀𝜎(3)𝑘3
…𝑀𝜎(𝑛)𝑘𝑛

𝜎∈𝑆𝑛

 



But the only terms that survive here are those where 𝑘1, 𝑘2, 𝑘3 …𝑘𝑛 are distinct, since otherwise we 
would be finding the determinant of a matrix with two equal columns. Now we have  

∑ 𝜀(𝜎)𝑁𝜌(1)1𝑁𝜌(2)2𝑁𝜌(3)3 …𝑁𝜌(𝑛)𝑛

⁡

𝜌∈𝑆𝑛

∑ 𝑀𝜎(1)𝜌(1)𝑀𝜎(2)𝜌(2)𝑀𝜎(3)𝜌(3) …𝑀𝜎(𝑛)𝜌(𝑛)

𝜎∈𝑆𝑛

 

= det(𝑁)
𝜀(𝜎)

𝜀(𝜌)
∑ 𝜀(𝜌)𝑀𝜎(1)1𝑀𝜎(2)2𝑀𝜎(3)3 …𝑀𝜎(𝑛)𝑛

𝜎∈𝑆𝑛

= det(𝑁) det(𝑀). 

Now I will show that we can find the determinant by expanding by a row or column and taking sub-
determinants. 

Specifically, if Δ𝑖𝑗 is the determinant of M with i and j removed multiplied by (−1)𝑖+𝑗, then 𝑀𝑖𝑗Δ𝑖𝑗 with 
the summation convention on i and j fixed is equal to det(M). 

Lemma: Suppose we have a matrix where if we remove row i and column j we get the matrix A, the ij 
entry of this matrix is 1, and all other entries in the i’th row and j’th column are 0, then its determinant 
is equal to (−1)𝑖+𝑗det⁡(𝐴) and thus Δ𝑖𝑗. 

Proof: We can do i-1 row swaps and j-1 column swaps to turn this into a matrix with 1 in the top left 
and A after the bottom left corner of the 1. Then by a simple volume argument the determinant of this 
is equal to the determinant of A. (ie, in 3d, a parallelopiped if we keep the x axis fixed and move the y 
and z axis parallel to the x axis has the same volume scale factor equal to the area scale factor of the 
parallelogram scale factor of the y-z parallelogram). Then we have i+j-2 sign changes, and thus i+j sign 
changes, so this completes the proof of the lemma. 

Theorem: 𝐷𝑒𝑡(𝑀) = 𝑀𝑖𝑗Δ𝑖𝑗  with j fixed 

Proof: 

Notation: [𝐶1, 𝐶2, … 𝐶𝑛] will denote the determinant of the matrix with it’s columns as 𝐶1, 𝐶2, …𝐶𝑛. 

𝐷𝑒𝑡(𝑀) = [𝐶1, 𝐶2, … , 𝐶𝑗 , … , 𝐶𝑛] 

Note that by matrix multiplication, 𝐶𝑗 = 𝑀𝑖𝑗𝑒𝑖 with the summation convention. Therefore we can write 

𝐷𝑒𝑡(𝑀) = [𝐶1, 𝐶2, … ,𝑀𝑖𝑗𝑒𝑖, … , 𝐶𝑛] = 𝑀𝑖𝑗[𝐶1, 𝐶2, … , 𝑒𝑖, … , 𝐶𝑛] since the determinant is linear in each 
column from the level 6 video. [𝐶1, 𝐶2, … , 𝑒𝑖, … , 𝐶𝑛] = Δ𝑖𝑗 since we can go and subtract 𝑒𝑖 from each 
column until everything else in the i’th row is 0. So done. 

Lecture 16: 

Definition: The adjugate of a matrix M is 𝑀−1det⁡(𝑀). If M is not invertible, then 𝐴𝑑𝑗(𝑀) is the 
transpose of the cofactor matrix, ie the thing you get when finding the inverse before dividing by the 
determinant. Note that we used this adjuagate matrix in the Cayley Hamilton Theorem proof. 

Example: Consider the matrix 𝑀 ≔ (
1 𝑥 1
1 1 𝑥
𝑥 1 1

). Lets try to compute Det(M). 

Note that adding a multiple of 1 row to another does nothing to the determinant, so we can subtract 

the first row from the second and try to compute the determinant of (
1 𝑥 1
0 1 − 𝑥 𝑥 − 1
𝑥 1 1

). We can also 



subtract x times the first row from the third to get (
1 𝑥 1
0 1 − 𝑥 𝑥 − 1
0 1 − 𝑥2 1 − 𝑥

). We have now reduced the 

problem to finding det (
1 − 𝑥 𝑥 − 1
1 − 𝑥2 1 − 𝑥

) which is 𝑥3 − 3𝑥 + 2. This is useful because if you try to 

“naively” compute the determinant of, say, a 5*5 matrix you could have up to 120 terms, and this just 
gets much worse for larger matrices. 

We have seen from A level that we can use matrices to solve systems of linear equations. 

Consider a system of n linear equations for unknowns 𝑥1, 𝑥2, 𝑥3, … 𝑥𝑛. Now we rewrite the system in 
vector-matrix form as 𝐴𝑥 = 𝑏. If A has non-zero determinant we know what to do and there will be a 
unique solution 𝑥 = 𝐴−1𝑏. Therefore we will talk about what happens in the other case. 

Case 1: b is not in the image of A in which case there are no solutions. 

Case 2: b is in the image of A in which we have infinitely many solutions: In this case we take a 
particular solution and add any element in the kernel of A. If u is a solution to 𝐴𝑥 = 𝑏, then x is a 
solution if and only if x-u is in the kernel of A, since we need 𝐴(𝑥 − 𝑢) = 0. 

Example: Let x and y be real numbers, and we want to solve Ax+B with 𝐴 = (
1 𝑥 1
1 1 𝑥
𝑥 1 1

) , 𝑏 = (
1
𝑦
1
),  

𝑥 ≠ 1, 𝑥 ≠ −2. 

Now we can compute 𝐴−1: 𝐴−1 =
1

𝑥3−3𝑥+2
(

1 − 𝑥 1 − 𝑥 𝑥2 − 1
𝑥2 − 1 1 − 𝑥 1 − 𝑥
1 − 𝑥 𝑥2 − 1 1 − 𝑥

). Now we can find by getting rid 

of certain common factors that our solution is 

1

𝑥2+𝑥−2
(

−1 −1 𝑥 + 1
𝑥 + 1 −1 −1
−1 𝑥 + 1 −1

)(
1
𝑦
1
) =

1

𝑥2+𝑥−2
(

𝑥 − 𝑦
𝑥 − 𝑦

𝑥𝑦 + 𝑦 − 2
). 

If x=1, then the kernel of A has dimension 2, so there is a plane of solutions if and only if y=1 (since y 
must be in the image of a which is multiples of (1,1,1)), otherwise there are none. 

If x=-2, then the kernel of A has dimension 1, so there is a line of solutions if b is in the image of A. This 
turns out to be the case exactly when y=-2 – I won’t go through this too carefully but essentially this is 

because (
1 −2 1
1 1 −2

−2 1 1
)(

𝑎 − 1
𝑎 − 1

𝑎
) must be the form in order to get 1 in the first and third entry (we 

need the same first and second entries, and we need it to be such that they are both 1), and in any 
case we end up with -2 in the middle. 

I notice that above the dimension of the kernel equals the multiplicity of the root in the determinant. I 
wonder if something more general along these lines can be said? 

Lecture 17: 

Later this lecture we will give a more efficient method of solving systems of linear equations since in 
practice inverting a matrix is very difficult and slow for anything larger than 3*3. 

Consider the matrix equation 𝐴𝑢 = 0. This equation is saying 𝑅1. 𝑢 = 𝑅2. 𝑢 = 𝑅3. 𝑢 = 0, so we are 
looking at the intersection of 3 planes. But we knew this from A level, as well as the idea that if the 



right hand side is non-zero there may be no solutions, in which case the planes either form a sheaf or 
have two or all three parallel, and in higher dimensions I’m sure there are way more possible cases. 
The solution if the right hand side is 0 is by definition equal to the kernel of A, which is just 0 if and only 
if A is invertible. 

Recall from A level (in deriving the eigenvalue stuff): Suppose there exists a non-zero vector v such 
that 𝐴𝑣 = 0, then since both 𝐴0 = 𝐴𝑣 = 0, this means that A is a many-to-one map so it is not 
invertible, so this implies that A has determinant 0. Conversely, if A is not invertible, then Av=0 has a 
non-zero solution, because A must have a kernel. We did not need this part for A level since we were 
only ever given matrices where we could actually find 3 linearly independent eigenvectors, and this is 
not always the case, but the fact that when this is the case there is an eigenvector is obvious and does 
not need proof. And now we know there is always an eigenvector. We will need to work in the complex 
numbers since a real matrix can have non-real eigenvalues from the characteristic equation, and at A 
level cases like this were avoided, but they can come up. 

Note that if we go back to the intersection of the 3 planes idea, the dimension of the intersection of 
the three planes equals the dimension of the solution space which equals the dimension of the 
kernel. But then the number of linearly independent normals to these planes is 3 minus this, which 
equals the rank. This is hinting is a more general theorem which says that the dimension of the row 
space of any matrix equals the dimension of the column space. The lecturer did not do this but it is 
fundamental to linear algebra so I will. 

Here is the proof from wikipedia, noting that orthogonal means perpendicular. 

Image: The proof from 
wikipedia that row rank = column rank for all matrices. 

Now as promised I will show the easier method of finding the solutions to the system of equations. 
This method is called Gaussian elimination. 

Consider a system of m equations with n unknowns, with m and n possibly different. Then we look for 
one coefficient that is non-zero (if this does not exist then this is not very interesting), and move it to 
the top left corner of the system. 

Take the first equation of the form 𝐴1𝑥1 + 𝐴2𝑥2 + 𝐴3𝑥3 + ⋯𝐴𝑘𝑥4 = 𝑏𝑗  with the first term non-zero, 
then subtract multiples of it from the rest of the equations such that all their first coefficients are 0. 

Now we have m-1 equations with at most n-1 non-vanishing unknowns, and we repeat the same 
procedure again. After repeatedly doing this, we have 1 equation with n unknowns, another one with 
n-1 unknowns, another one with n-2 and so on. If we have more unknowns than equations, then we 



will get incomplete information since every equation may have many unknowns, so there will be many 
solutions. If we have more equations than unknowns, or we get to a point that we cannot find another 
non-zero element, we will end up with a lot of 0=(linear combination of the b’s) equations at the end. If 
these linear combinations are ever not 0, we have no solutions, but otherwise we can work backwards 
from the n’th equation to find all the unknowns. 

Now we can interpret this another way: We are taking a matrix and by only interchanging rows and 
columns and adding multiples of rows to other rows we get it into row echelon form or upper 
triangular form, meaning every element below the main diagonal is zero. If m=n, then one can see that 
the determinant of the matrix in question is (possibly with a sign change) equal to the product of these 
diagonal entries. 

In the coming lectures, we will explore more properties of Eigenvalues and Eigenvectors. We will only 
do this for real and complex matrices – for general linear maps between vector spaces that is beyond 
the scope of this course. 

For example, now we know that the fundamental theorem of algebra holds, and this means that every 
matrix actually has Eigenvalues since the characteristic equation has (possibly complex) roots. At A 
level we knew this for real 3x3 and general 2x2 matrices – which was all we needed - but now we know 
it fully. 

Definition: The multiplicity of a root k of a polynomial is the number of times you can factor out x-k. 
The multiplicity of an eigenvalue k is the multiplicity of k in the characteristic equation of the matrix. 

Lecture 18: 

Definition: A matrix is diagonalizable if it can be written as 𝑀 = 𝑃𝐷𝑃−1 for a diagonal matrix D. 

Definition: The algebraic multiplicity of an eigenvalue λ is the multiplicity of λ as the root of the 
characteristic polynomial. 

Definition: The geometric multiplicity of an eigenvalue λ is the dimension of the space of vectors v 
such that Mv=λv. This is called the eigenspace. 

Proposition: By the fundamental theorem of algebra there are exactly n eigenvalues for an n*n matrix if 
we count multiple times for algebraic multiplicity. 

Proposition: The determinant is the product of the eigenvalues with algebraic multiplicity as their 
power. 

Intuition: If the matrix is really just taking a basis for the vector space and scaling it by eigenvalues, 
then the volume scale factor is clearly the product of those. But this only works for “nice” matrices. 

Proof: Det(M)=Det(M-0I) which is the characteristic polynomial evaluated at 0. But this is just the 
constant term of the characteristic polynomial, which we know is the product of the roots (possibly 
with a minus sign – we will address this) which is the product of the eigenvalues. 

About the sign change: The constant term of the characteristic polynomial is (−1)𝑛𝜆𝑛 so we can 
multiply the whole polynomial by (−1)𝑛 to get it to have 1 as the leading term, and then the sign 
change of the constant term is (−1)𝑛, but the constant term is also (−1)𝑛 times the product of the 
roots, so everything aligns correctly. 



Sine polynomials with real coefficeints have roots that are real or come in conjugate pairs, this must 
hold for eigenvalues of real matrices. 

Proposition: The trace of a matrix as defined as the sum of elements along the diagonal is actually the 
same as the sum of the eigenvalues. 

Proof: Set the equation to 𝐷𝑒𝑡(𝜆𝐼 − 𝑀) so that 1 is the leading term In the polynomial. Then the sum of 
the roots is minus the second leading term. But we only get a second leading term from the 
determinant term given by 𝐴11𝐴22 …𝐴𝑛𝑛 where 𝐴 = 𝜆𝐼 − 𝑀. But 𝐴11𝐴22 …𝐴𝑛𝑛 = ∏ (𝜆 − 𝑀𝑖𝑖)

𝑛
𝑖=1 , which 

has minus the sum of the diagonal entries as its second leading terms. All other products in the 
determinant have to have no more than n-2 copies of 𝜆 so the 𝜆𝑛−1 term is fixed at this. 

Example, since in A level we always had real eigenvalues, here is a case where we don’t: 

Consider (0 −1
1 0

). Then the characteristic equation is 𝜆2 + 1 = 0, so the eigenvalues are ±𝑖. Lets 

compute the eigenvectors associated with these. We want to solve (A-Ii)v=0: (−𝑖 −1
1 −𝑖

) (
𝑥
𝑦) = (

0
0
). 

Therefore we have that -ix-y=0 and the other equation is equivalent. So the eigenvectors for the 

eigenvalue i are all multiples of ( 1
−𝑖

). By the same calculation, for the eigenvalue -i the eigenvectors 

are all multiples of (1
𝑖
). 

Example: The eigenvalues of (1 1
0 1

) are just 1 with algebraic multiplicity 2. But the geometric 

multiplicity is not 2 If we solve (A-I)v=0: (0 1
0 0

) (
𝑥
𝑦) = (

0
0
) if and only if y=0, which means that the 

geometric multiplicity is 1 since the eigenvector is just the x axis. 

Also, we cannot diagonalize (1 1
0 1

), since the eigenvector matrix is just (1 0
0 1

) which is I, but for any 

P, 𝑃𝐼𝑃−1 = 𝐼 and not (1 1
0 1

) so this is a contradiction. 

It turns out that a matrix is diagonalizable if and only if the geometric multiplicities are all equal to the 
algebraic multiplicities, and of course we will prove this. 

Proposition: Eigenspaces are actually vector spaces and therefore geometric multiplicity is well 
defined. 

Proof: The eigenspace is exactly the kernel of a matrix 𝑀 − 𝜆𝐼. But kernels are subspaces since they 
are closed under additions and inverses and stuff (cf groups where we see that kernels are 
subgroups). 

Proposition: The sum of geometric multiplicites is at most the dimension of the whole space because 
otherwise the dimension would be too high. 

Proof: I will put a proof in the notes for next lecture due to some stuff to cover first (similar matrices). 
For now we will use it (ok since we promise to prove it in due course). 

Definition: The defecit of an eigenvalue is the difference between their algebraic and geometric 
multiplicities. We will show also later in this course that the defecits are all 0 if and only if the matrix is 
diagonalizable. 



Example: Consider 𝐴 = (
4 1 0
0 4 1
0 0 4

). Then the characteristic polynomial is just (4 − 𝜆)3. 

Lets see what happens for the geometric multiplicity. We want (A-4I)v=0, so 

(
0 1 0
0 0 1
0 0 0

)(
𝑥
𝑦
𝑧
) = 0, which implies that y=z=0, so the x axis is the eigenspace, so the geometric 

multiplicity is 1 so the defecit is 2. 

Example: If we take a reflection in a plane with normal n, then geometrically we see that we have an 
eigenvalue 1 with eigenspace parallel to the plane and eigenvalue -1 with eigenspace parallel to the 
normal n. 

Example: A rotation in 2 dimensions is given by (
cos⁡(𝜃) −sin⁡(𝜃)
sin⁡(𝜃) cos⁡(𝜃)

). The characteristic polynomial of 

this is 𝜆2 − 2𝜆 cos(𝜃) + 1 = 0, and one checks that the eigenvalues are 𝑒±𝑖𝜃 with eigenvectors parallel 

to ( 1
∓𝑖

). 

If we have a rotation in 3D about n, then we must have n an eigenvector with eigenvalue 1, and 
perpendicular to n we have the same behavior as in the 2D case, ie eigenvalues 𝑒±𝑖𝜃 with eigenvectors 

(
1
∓𝑖

) where (1
0
) , (

0
1
) are considered to be perpendicular vectors that span the plane perpendicular to 

n. 

Example: Consider 𝐴 = (
−3 −1 1
−1 −3 1
−2 −2 0

). Then, I won’t go through this explicitly, but it turns out that we 

have only an eigenvalue -2 with algebraic multiplicity 3. But we can see that the kernel of A+2I will not 

have dimension 3 since that would imply A+2I=0, so we do have a defecit. But A+2I is (
−1 −1 1
−1 −1 1
−2 −2 2

) 

which we see has rank 1 since it puts everything to a line. Therefore the geometric multiplicity has 
dimension of the nullity of that matrix which is 2. 

Proposition: Diagonalizable (in the complex numbers) is equivelent to geometric and algebraic 
multiplicities being the same. In the real numbers this is the case if all eigenvalues are real. 

Proof: We will do this next lecture due to time constraints. 

Lecture 19: 

Suppose the geometric and algebraic multiplicities are the same, then we have eigenvectors that form 
a basis for the vector space, and thus the matrix is diagonalizable. 

If the matrix is diagonalizable, then it has to be that 𝐴 = 𝑃𝐷𝑃−1 and since P is invertible it must form a 
basis of eigenvectors so there has to be as much total geometric multiplicity as n. 

Now we know that if eigenvalues are all distinct the matrix is diagonalizable. But the matrix can still be 
diagonalizable otherwise, it just isn’t always. 

The lecturer also provided the proof that a set of eigenvectors with distinct eigenvalues is linearly 
independent. See the proof of this in level 6. 



Definition: Matrices A and B are similar if there exists a matrix P such that 𝐵 = 𝑃−1𝐴𝑃. Equivalently, 
they are similar if they are conjugate in the groups sense. We can now interpret a matrix as 
diagonalizable if it is similar to a diagonal matrix. In fact, similar matrices can be thought of as 
representing the same linear map with respect to a different basis. This is not too hard to see 
intuitively but we will look into this idea more formally soon. 

Proposition: If matrices are similar then they have the same characteristic polynomial, and thus the 
same trace and determinant and eigenvalues. 

Proof: 𝐷𝑒𝑡(𝐵 − 𝜆𝐼) = 𝐷𝑒𝑡(𝑃−1𝐴𝑃 − 𝜆𝐼) = 𝐷𝑒𝑡(𝑃−1𝐴𝑃 − 𝑃−1(𝜆𝐼)𝑃) = 𝐷𝑒𝑡(𝑃−1(𝐴 − 𝜆𝐼)𝑃). 
Decomposing the determinant as a product we see that 𝐷𝑒𝑡(𝐵 − 𝜆𝐼) = 𝐷𝑒𝑡(𝐴 − 𝜆𝐼). So done. 

Theorem: Geometric multiplicity is at most algebraic multiplicity. 

Proof: Let an eigenvalue have geometric multiplicity k in a matrix A. Then A is similar to a matrix that 
can be written as four blocks as follows: 

(
𝜆𝐼𝑘 𝐵
0 𝐶

) 

Now lets compute the characteristic polynomial of this, which must be the same as that of the matrix 
A: 

𝑃(𝑥) = 𝐷𝑒𝑡 (
(𝜆 − 𝑥) = 𝐼𝑘 𝐵

0 𝐶 − 𝑥𝐼𝑛−𝑘
) 

Note that since we can do column operations (remove multiples of the first k columns until B 
vanishes) without changing the determinant, it is then easy to see (by the volume property) that 
𝑃(𝑥) = (𝜆 − 𝑥)𝑘𝐷𝑒𝑡(𝐶 − 𝑥𝐼𝑛−𝑘). We have the factor (𝜆 − 𝑥)𝑘 proving that the algebraic multiplicity is 
at least k, so done. 

Theorem: The eigenvaleus of a hermitian matrix are real 

Proof: Let v be an eigenvector with eigenvalue λ. 

𝑣†(𝐴𝑣) = 𝑣†(𝐴†𝑣) = (𝑣†𝐴†)𝑣 = (𝐴𝑣)†𝑣 since A is hermitian so 

λ𝑣†𝑣 = λ̅𝑣†𝑣  

But λ equals its conjugate so is thus real. 

Theorem: Eigenvectors of a hermitian matrix from distinct eigenvectors are orthogonal 

Proof: Copy the level 6 proof about decomposition of symmetric matrices which proved the same 
thing, and just replace transpose with hermitian conjugate and everything accordingly. 

Theorem: For each eigenvalue of a real symmetric matrix we can pick a real eigenvector v. 

Proof: Let u be the real part of v. Then Au is real and A(v-u) is imaginary, and thus are the real and 
imaginary parts of Av, so Au=λu since the real parts match, so u is a real eigenvector. 

Lecture 20: 

Let {𝑤1, 𝑤2, … , 𝑤𝑟} be a set of r linearly independent vectors. We will construct a sequence of sets of 
the form {𝑢1, 𝑤2′, … , 𝑤𝑟′}, {𝑢1, 𝑢2, 𝑤3′′, … , 𝑤𝑟′′} such that at the end we have a set of orthonormal 
vectors, such that each set has the same span and is linearly idnependent. To do this we will make 



sure the 𝑢𝑖’s are orthonormal to eachother and orthogonal to the w’s. In the first step we will simply 

take 𝑢1 ≔
𝑤1

|𝑤1|
 and write 𝑤𝑗

′: = 𝑤𝑗 − (𝑢𝑗 . 𝑤𝑗)𝑢1 to ensure 𝑢1 has length 1 and is perpendicular to every 

other vector in the set. Now we do the same thing to turn {𝑤2
′ , 𝑤3

′ , … , 𝑤𝑟′} into {𝑢2, 𝑤3′′, … , 𝑤𝑟′′} until we 
finish, where at the end we will have an orthonormal basis for our vector space. We have the gurantee 
at each step that everything is orthogonal to previous u vectors by construction. 

Definition: an Eigenspace is a space of eigenvectors corresponding to an eigenvalue. 

We can now find an orthonormal basis for each eigenspace of a hermitian matrix A by the proposition 
above. 

Theorem: Let A be a Hermitian matrix of size n*n, then A is diagonalizable, and in fact we can 
diagonalize it by 𝑃†𝐴𝑃 = 𝐷 as that is equal to 𝑃−1𝐴𝑃 since P can be chosen to be unitary by above. 
This is stronger than what was used at A level since this allows for repeated eigenvalues. 

Proof: Induction on n: For n=1 this is trivial. 

Now suppose it is true for n=k. Then any (k+1)x(k+1) hermitian matrix H has a characteristic 
polynomial which has a real root with an eigenvector. Now pick any eigenvector and pick a basis that 
includes this eigenvector. Now apply the above procedure (called Gram Schmidt) to turn it into an 
orthonormal basis. Now we will suppose that this is our basis – we will talk more on this point soon, 
but basically we know 

𝐻𝑒1 = 𝜆1𝑒1 

Now we can write our matrix like 

𝐴 = (

𝜆1 0 … 0
0 … … …
… … 𝐶 …
0 … … …

) 

Proof that we have zeroes on the top row: The matrix Is hermitian, but it is not obvious since it is with 
respect to another basis. But don’t worry – this basis is orthonormal. We can move it to the standard 
basis using a unitary matrix, do the transformation, then move it back. Ie, 𝐴 = 𝑈𝐻𝑈−1, where since U 
is unitary it equals its hermitian conjugate. 𝐴 = 𝑈𝐻𝑈†, now use the fact that A is hermitian and take 
the conjugate of both sides to get that 𝐴 = 𝐴† follows. Now “C” is a k*k hermitian matrix with respect 
to an orthonormal basis so we can apply the induction hypothesis then we are done. 

More on “change of basis” stuff: If A represents a linear map T from V with basis {𝑒1, … 𝑒𝑛} to W with 
basis {𝑓1, … 𝑓𝑚} then 𝑇(𝑒𝑖) = ∑𝑓𝑗𝐴𝑗𝑖. If bases of the same vector space are related by 𝑒𝑖

′ = ∑𝑒𝑘𝑃𝑘𝑖 we 
can construct the matrix P accordingly to do a change of basis. If we also set 𝑇(𝑒𝑖′) = ∑𝑓𝑗′𝐵𝑗𝑖 and  
𝑓𝑖

′ = ∑𝑓𝑘𝑄𝑘𝑖, then (Proposition) we have a change of basis by 𝐵 = 𝑄−1𝐴𝑃 where A and B represent the 
same linear map with respect to a different basis 

Proof of the proposition: 

 𝑇(𝑒𝑖′) = 𝑇(∑𝑒𝑘𝑃𝑘𝑖) = ∑𝑇(𝑒𝑘)𝑃𝑘𝑖 = ∑∑𝑓𝑗𝐴𝑗𝑘 𝑃𝑘𝑖 = ∑𝑓𝑗(𝐴𝑃)𝑗𝑖 

𝑇(𝑒𝑖′) = ∑𝑓𝑗′𝐵𝑗𝑖 = ∑∑𝑓𝑘𝑄𝑘𝑗 𝐵𝑗𝑖 = ∑𝑓𝑘(𝑄𝐵)𝑘𝑖  

All steps directly from the definitions above, being careful to use the correct indices. 



We now rename the indices so that they match and then we see that QB=AP by comparing 
coefficients so it follows that 𝐵 = 𝑄−1𝐴𝑃. Q is invertible because everything is linearly independent. 

Here is an intuitive diagram to show whatever the heck was just happening, noting that the writing 
order of matrix multiplication is the reverse of the order the maps happen in. 

Image: The promised diagram 

When we left multiply a vector by P (say Pa=b), we note that the columns of P are how 𝑒𝑖′ is formed by 
a linear combination of 𝑒𝑗, which means if our vector a is actually how we write the vector in e’ 
coordinates (basis) then the result b is how we write it in the original e coordinates (again it’s a linear 
combination of components), as 𝑏𝑘 comes from the contribution of how much the a components add 
to the k’th component of b, which is based on the k’th column of P. This means (we can say) P sends e’ 
to e (compare with matrix A, representing the linear transformation. we write some vector in 
coordinate e, multiply by a, and get the result written in coordinates f, meaning we send e to f) 

Remark: Column i of A represents 𝑇(𝑒𝑖) with respect to the f basis. This is a generalization of a known 
fact about matrices from A level. 

If we want to change basis in the other direction, then the matrices 𝑃′, 𝑄′⁡ we need are such that     
𝑃′ = 𝑃−1 and 𝑄′ = 𝑄−1, since we want 𝐴 = 𝑄′−1𝐵𝑃′. 

Example: Consider dim(V)=2, dim(W)=3 and 

𝑇(𝑒1) = 𝑓1 + 2𝑓2 − 𝑓3 

𝑇(𝑒2) = −𝑓1 + 2𝑓2 + 𝑓3 

Then we can write the matrix A as 

(
1 −1
2 2

−1 1
) 

Now consider a basis such that 𝑒1
′ = 𝑒1 − 𝑒2, 𝑒2

′ = 𝑒1 + 𝑒2 

This makes 𝑃 = (
1 1

−1 1
). 

Now let w be such that 𝑓1′ = 𝑓1 − 𝑓3, 𝑓2
′ = 𝑓2, 𝑓3

′ = 𝑓1 + 𝑓3, this makes 

𝑄 = (
1 0 1
0 1 0

−1 0 1
) 



Therefore the change of basis formula gives 

𝐵 = 𝑄−1𝐴𝑃 = (
2 0
0 4
0 0

). Therefore 𝑇(𝑒1
′) = 2𝑓1′, 𝑇(𝑒2

′) = 4𝑓2′, 𝑇(𝑒3
′) = 0. 

Note: If V=W with the same basis then we must have P=Q. Therefore, matrices represent the same 
linear map 𝑇:⁡𝑉 → ⁡𝑉 if and only if they are similar. 

Lecture 21: 

Here we reprove the change of basis formula just to make sure it’s really clear, I guess (I’m not sure 
why we’re re-proving it): 

Consider a vector space V and x a vector in V, and let V have 2 bases {𝑒𝑖}, {𝑒𝑖
′} related by a matrix P by 

𝑒𝑗
′ = ∑𝑒𝑖𝑃𝑖𝑗  and 𝑥 = ∑𝑥𝑖𝑒𝑖 = ∑𝑥𝑖

′𝑒𝑖
′. But now we know that 𝑥 = ∑ 𝑥𝑗

′𝑒𝑗
′

𝑗 = ∑ 𝑥𝑗
′ ∑ 𝑒𝑖𝑃𝑖𝑗𝑖𝑗 . Therefore 

(

𝑥1

𝑥2

…
𝑥𝑛

) = (

𝑃11 … … 𝑃1𝑛

… … … …
… … … …
𝑃𝑛1 … … 𝑃𝑛𝑛

)(

𝑥1′

𝑥2′
…
𝑥𝑛′

), therefore x=Px’. 

Similarly, consider a vector space W with a vector y and bases {𝑓𝑖}, {𝑓𝑖
′}, then by the same argument 

y=Qy’. If we have a linear map V to W then we can write it in matrix form as y=Ax and y’=Bx’. Combining 
this with what we proved above we get the same conclusion: 𝐵 = 𝑄−1𝐴𝑃. 

On the Cayley-Hamilton theorem: 

We can verify it for matrices of a specific size (like 2*2 or 3*3) by just doing some tedious algebra. We 
won’t do this but you can do it yourself if you want to, but of course this is not possible to do for 
infinitely many sizes. 

If A is diagonalizable, the proof is much easier. 𝑃−1𝐴𝑃 = 𝐷 and the characteristic polynomial applied 
to D gives 0 since its diagonal entries are roots of this equation. To spell out why this extends to A, 

𝑃−1𝐴𝑃𝑃−1𝐴𝑃𝑃−1𝐴𝑃 …𝑃−1𝐴𝑃 = 𝑃−1𝐴𝐴𝐴𝐴 …𝐴𝑃 = 𝑃−1𝐴𝑘𝑃 = 𝐷𝑘 

𝐴 = 𝑃0𝑃−1 = 0 

We can argue that any matrix is arbitrarily close to a diagonalizable matrix if we perturb it in a clever 
way to get a second proof different from the one in Level 6 (which the lecturer is doing but this is non-
examinable), but the details can be tricky and this is beyond the course. 

Definition: A quadratic form is a function 𝐹:ℝ𝑛 → ℝ such that 𝐹(𝑥) = 𝑥𝑇𝐴𝑥 where A is a real 
symmetric matrix. We can diagonalize A to get 𝐹(𝑥) = (𝑃𝑇𝑥)𝑇𝐷(𝑃𝑇𝑥). We will rename 𝑃𝑇𝑥 to x’. If we 
set 𝑥 = 𝑥1𝑒1 + ⋯𝑥𝑛𝑒𝑛, 𝑥′ = 𝑥1

′𝑒1 + ⋯+ 𝑥𝑛
′ 𝑒𝑛 then we can make a new basis such that 

 𝑥 = 𝑥1′𝑢1 + ⋯𝑥𝑛′𝑢𝑛, and we will call this the principal axis of the quadratic form. These are related to 
the standard axis by the orthogonal matrix P. Because of this, |𝑥|2 = ∑𝑥𝑖𝑥𝑖 = ∑𝑥𝑖

′𝑥𝑖
′. 

Example, let 𝐹(𝑥) = 𝑥𝑇𝐴𝑥 with 𝐴 = (
𝑎 𝑏
𝑏 𝑎

). This has eigenvalues 𝑎 ± 𝑏 and normalized eigenvectors 

1

√2
(
±1
1

). We can see that 𝐹(𝑥) = 𝑎𝑥1
2 + 2𝑏𝑥1𝑥2 + 𝑎𝑥2

2 = (𝑎 + 𝑏)(𝑥1
′)2 + (𝑎 − 𝑏)(𝑥2

′ )2. 



As an example, if we take 𝑎 =
3

2
, 𝑏 = −

1

2
 then 𝐹(𝑥) = (𝑥1

′)2 + 2(𝑥2
′ )2 which is an ellipse with axis being 

at the eigenvectors. If we take 𝑎 = −
1

2
, 𝑏 =

3

2
 then we get 𝐹(𝑥) = (𝑥1

′)2 − 2(𝑥2
′ )2 which is a hyperbola. 

Lecture 22: 

Example: Let F(x) be a quadratic form that is already diagonalized so we can write 𝐹(𝑥) = 𝑥𝑇𝐷𝑥 with 
respect to our principal axis. If the eigenvalues are all positive then we set F to equal a constant we get 
an ellipsoid, ie a sphere with axes stretched. If eigenvalues are some positive and some negative, like 

in the case 𝐴 = (
0 1 1
1 0 1
1 1 0

), we get a hyperboloid, which could be either in one piece or two pieces, I 

will show an image to visualise this: 

Images: 1-sheated vs 2-sheated hyperbola. 

Note that a matrix M can be decomposed additively into a symmetric and antisymmetric part. For A 
antisymmetric, one checks that 𝑥𝑇𝐴𝑥 = 0, and this is why we only define this for symmetric matrices. 

Defintion: A quadric in ℝ𝑛 is a hypersurface defined by setting 𝑄(𝑥) ≔ 𝑥𝑇𝐴𝑥 + 𝑏𝑇𝑥 + 𝑐 = 0 for a 
symmetric n*n real matrix A and b a vector in ℝ𝑛. 

We want to classify this up to solutions related by rotations and reflections and translations. 

If A is invertible then we can complete the square. We can take a vector 𝑦 = 𝑥 +
1

2
𝐴−1𝑏. If we do 

algebra on this we see that 𝑦𝑇 = 𝑥𝑇 +
1

2
𝑏𝑇𝐴−1, and that 𝑦𝑇𝐴𝑦 = 𝑥𝑇𝐴𝑥 +

1

2
𝑏𝑇𝑥 +

1

4
𝑏𝑇𝐴−1𝑏. What we 

can do is put 𝑦𝑇𝐴𝑦 = 𝑥𝑇𝐴𝑥 +
1

2
𝑏𝑇𝑥 +

1

4
𝑏𝑇𝐴−1𝑏 + 𝑐 − 𝑐 = 𝑄(𝑥) +

1

4
𝑏𝑇𝐴−1𝑏 − 𝑐. This means that 

𝐹(𝑦) =
1

4
𝑏𝑇𝐴−1𝑏 − 𝑐 is equivalent to 𝑄(𝑥) = 0. Now we diagonalise F, then the eigenvalues of A and 

the value of 1
4
𝑏𝑇𝐴−1𝑏 − 𝑐 are what determine the geometrical nature of the quadric. If they are all 

positive we get an ellipsoid, if the eigenvalues have different signs and 1
4
𝑏𝑇𝐴−1𝑏 − 𝑐 ≠ 0 will produce a 

hyperboloid. If some eigenvalues are 0, then we will not be able to do the trick above and get linear 
and quadratic terms. 

Definition: A conic is a quadric in ℝ2. If A is invertible then we get 𝑎𝑥2 + 𝑏𝑦2 = 𝑐⁡where x and y are 
renamed to be the principal axis, and this is an ellipse or a hyperbola or a point (if c=0) or nothing (if 
a,b>0 and c<0 or the other way around). If A is not invertible then we can still diagonalize it since it is 
symmetric, then we get 𝜆1𝑥

2 + 𝑏1𝑥 + 𝑏2𝑦 + 𝑐 = 0 where x and y are our principal axes. This is a 
parabola (unless 𝑏2 = 0 in which case it is a pair of lines or a line or nothing, or both eigenvalues are 0 
in which case it is a single line). See level 6 for the half-visual-half-algebraic proof that all of these 
(except for the degenerate cases of nothing, points or lines) are actually the slices of a cone. I now am 
going to make a guess that quadrics in general are slices of higher dimensional cones but I don’t know 
if this is true. 

Lecture 23: 



Now we redo everything about conic sections in A level further maths and in the level 6 thing on conic 
section properties. So look at that. I’m not writing up this conic eccentricity focus directrix parabola 
hyperbola ellipse nonsense again because I find it so boring. Moving on. 

Theorem: Consider a matrix A of size 2*2 corresponding to a linear map from ℂ2 → ℂ2. Then it is 
similar to one of the following: 

i) (
𝑎 0
0 𝑏

) where there are no constraints on a and b – they may be 0 ot not or the same or not. 

ii) (
𝑎 1
0 𝑎

) 

Proof: The characteristic polynomial of A has 2 roots counting multiplicity over ℂ. If the roots are 
distinct then A is diagonalizable so there is nothing to prove. In fact the only case we need to worry 
about is when we have a repeated eigenvalue with geometric multiplicity 1. Let v be an eigenvector 
with the eigenvalue which is 𝜆 and extend it to a basis by another linearly independent vector w. We 
know that 𝐴𝑣 = 𝜆𝑣, 𝐴𝑤 = 𝑎𝑣 + 𝑏𝑤 since v and w are a basis. Therefore the matrix is similar to a matrix 

of the form (𝜆 𝑎
0 𝑏

). Note that ⁡𝑏 = 𝜆⁡since the characteristic polynomial must agree. So we are similar 

to a matrix of the form (𝜆 𝑎
0 𝜆

). Also, 𝑎 ≠ 0 since we do not have a diagonal matrix by assumption. We 

will now define 𝑢 = 𝑎𝑣, then 𝐴𝑤 = 𝑢 + 𝜆𝑤. Now with respect to the basis {u, w} our matrix is (𝜆 1
0 𝜆

). 

So done. 

We now want to find a nice form for any matrix similar to any non-diagonalizable matrix to generalize 
the theorem above. This will take a lot of work but we will get a very useful result. 

Definition: Eigenspace 

The eigenspace of an eigenvector λ is exactly what you think it is – the vector space formed by 
eigenvectors, or the kernel of 𝐴 − 𝜆𝐼. We write this as 𝐸(𝜆) 

Definition (Direct sum): An internal direct sum of vector spaces 𝐸1 ⊕ 𝐸2 ⊕ 𝐸3 …𝐸𝑛−1 ⊕ 𝐸𝑛⁡is the 
vector space defined as a linear combination of elements of the E’s where the E’s are a subset of a 
vector space. This is only defined if any set of vectors from each of the spaces are linearly 
independent. An external direct sum is when we build a vector space from existing vector spaces 
instead of subspaces of an existing vector space. We will just need the internal one for this thing we’re 
doing to generalize the theorem above. 

We know that eigenspaces form an internal direct sum as we proved earlier that eigenvectors with 
distinct eigenvalues are linearly independent. 

Proposition: A matrix A is diagonalizable in ℂ if and only if there exists a non-zero polynomial p such 
that p(A)=0 and p(x) has no repeated roots. 

Proof: If A is diagonalizable then the vector space is the direct sum of the eigenspaces because of 
geometric multiplicities and stuff. So v can be written uniquely as a linear combination of 
eigenvectors. Now consider the polyno mial 𝑝(𝑡) = ∏ (𝑡 − 𝜆𝑖

𝑘
𝑖=1 ) where k is the number of distinct 

eigenvalues of A. Then 𝑝(𝐴)𝑣 = ∑𝑝(𝐴)𝑣𝑖 = ∑𝑝(𝜆𝑖)𝑣𝑖 = 0 as again, 𝐴 is effetively 𝜆𝑖𝐼 when it is acting 
on the vector 𝑣𝑖. Conversely, suppose such a polynomial exists. Then there must be one of the form 
∏ (𝑡 − 𝜆𝑖

𝑘
𝑖=1 ) with eigenvalues, since if we had another polynomial with p(A)=0 we could factor out 



non-eigenvalue factors by taking the inverse and multiplying. So suppose a polynomial of that form 
exists such that p(A)=0. Then we want to show that any vector in V is a sum of eigenvectors of distinct 

eigenvalues. Let 𝑞𝑗(𝑡) = ∏
𝑡−𝜆𝑖

𝜆𝑗−𝜆𝑖
𝑖≠𝑗  which is a polynomial of degree k-1. Note that 𝑞𝑗(𝜆𝑖) = 𝛿𝑖𝑗. Now 

consider 𝑞(𝑡) = ∑ 𝑞𝑖(𝑡)
𝑘
𝑖=1 . Then 𝑑𝑒𝑔(𝑞 − 1) < 𝑘 but 𝑞(𝜆𝑖) − 1 = 0 for all I from 1 to k. Therefore q=1. 

Now let 𝜋𝑗  be a matrix given by 𝑞𝑗(𝐴), then the above says that ∑𝜋𝑗 = 𝐼. Therefore given v in our vector 
space, we know that 𝑣 = ∑𝜋𝑗 𝑣. But then we want to show that 𝜋𝑗𝑣 is in 𝐸(𝜆𝑗), and this is true as we 

can reverse the definitions to get that (𝐴 − 𝜆𝑗𝐼)𝜋𝑗𝑣 =
1

∏ 𝜆𝑗−𝜆𝑖𝑖≠𝑗
(∏ 𝐴 − 𝜆𝑖

𝑘
𝑖=1 )𝑣 =

1

∏ 𝜆𝑗−𝜆𝑖𝑖≠𝑗
𝑝(𝑎)𝑣 = 0. 

Therefore 𝑣 = ∑𝜋𝑗 𝑣 is a sum of eigenvalues. So done. Note that in the proof above, 𝜋𝑗  can be thought 
of as a projection onto the j’th Eigenspace. 

Definition: The minimal polynomial of a matrix A is the polynomial p of least degree such that p(A)=0. 
This always exists by the cayley hamilton theorem. Note that if there are two minimal polynomials of 
the same degree that are not a constant multiple of eachother then we can rescale and subtract them 
in such a way that we get a polynomial of a smaller degree. So it is unique. Every polynomial p with 
p(A)=0 is a multiple of the minimal polynomial because we can write it as a multiple of the minimal 
polynomial plus a remainder R where p(R) cannot be 0. 

Example: The minimal polynomial of I is t-1. The minimal polynomial of (1 1
0 1

)⁡is (𝑡 − 1)2: It is not 

linear but it divides the characteristic polynomial so there’s not much else it can be since its degree is 
2. 

Theorem: A matrix is diagonalizable if and only if its minimal polynomial has no repeated roots 

Proof: This follows from the previous theorem: If there is any polynomial with no repeated roots that 
the matrix “satisfies” then the minimal polynomial has no repeated roots, and the converse is true, so 
this statement is equivalent to the matrix being diagonalizable. 

The multiplicity of an eigenvalue in the minimal polynomial which we write as 𝑐𝜆 gives a third 
multiplicity type. We will call the algebraic and geometric multiplicities 𝑎𝜆 and 𝑔𝜆. 

Lemma: Similar to for geometric multiplicity, 1 ≤ 𝑐𝜆 ≤ 𝑎𝜆 

Proof: The second inequality is easy as the minimal polynomial divides the characteristic polynomial. 
The first inequality is because the minimal polynomial of a matrix applied to an eigenvector must send 
the eigenvector to 0, but because of the idea that a matrix can be considered to be λI when we are 
thinking about what it does to an eigenvector, it means p(λI)=0 so λ is a root of p. 

Definition: We say a matrix is in jordan normal form if it is a block diagonal matrix of the form in the 
image below 

 



Where each “jordan block” is something like the image below, and the n’s give the size of the 
corresponding matrix to the image below. 

 

So a matrix in jordan normal form might look something like the image below 

 

Theorem: Every matrix can be written in Jordan Normal Form in a unique way up to permutation of the 
blocks. We will talk about matrices that have jordan normal forms and eventually prove that every 
matrix does. The image below shows the possible jordan normal forms for 3*3 matrices, as well as 
their minimal and characteristic polynomials which we can work out (although for higher dimesnional 
matrices, even knowing both of these polynomials does not determine the normal form). 

 

Now note that 𝐽𝑛(𝜆) = 𝐽𝑛(0) + 𝐼𝜆 

Note that in the standard basis, we have that 𝐽𝑛(0)(𝑒1) = 0, 𝐽𝑛(0)(𝑒𝑖+1) = 𝑒𝑖. Therefore we know by 

considering what doing this several times would do that (𝐽𝑛(𝜆) − 𝐼𝜆)𝑘 = (𝐽𝑛(0))
𝑘

= (
0 𝐼𝑛−𝑘

0 0
). And if 

k>n then we get the 0 matrix.  Therefore the minimal polynomial of 𝐽𝑛(0) is 𝑡𝑛 (this is minimal as any 
factor of this will not give 0), and thus the minimal polynomial of 𝐽𝑛(𝜆) is (𝑡 − 𝜆)𝑛 as if there was one 



with smaller degree we could shift it to get a smaller polynomial for 𝐽𝑛(0). Let n(A) denote the 
dimension of the kernel of A, then 𝑛(𝐴) = ∑𝑛(𝐽𝑛𝑖

). It should hopefully be clear that 

 𝑛((𝐽𝑚(𝜆) − 𝜆𝐼𝑚)𝑟) = min⁡(𝑟,𝑚). The intuition for this first m times we multiply this we essentially kill 
another column and increase the nullity by 1, then when the nullity is m we can’t go any further. 

Note that since blocks in block matrices all act on independent vector spaces, there are several 
things we can say. The determinant of the matrix is the product of the determinants of the blocks by a 
volume argument if we think about the standard basis. Therefore the characteristic polynomial is the 
product of the characteristic polynomial of the blocks. By definition of the minimal polynomial, the 
minimal polynomial is the lowest common multiple of the minimal polynomials of the blocks. 
Therefore because of these facts we know that 𝑔𝜆 is the number of jordan blocks with eigenvalue 𝜆 
(because each jordan block of 𝜆 adds 1 to the size of the kernel of A-λI), 𝑎𝜆 is the sum of sizes of jordan 
blocks with eigenvalue 𝜆, and 𝑐𝜆 is the size of the largest such block. 

Lemma: Jordan normal forms are unique up to permuting the blocks if they exist 

Proof: Suppose A is a matrix in jordan normal form. Then the number of jordan blocks for an 
eigenvalue 𝜆 that have at least size r is given by 𝑛((𝐴 − 𝜆𝐼)𝑟) − 𝑛((𝑎 − 𝜆𝐼)𝑟−1): The reason why is 
because it is exactly for the blocks of size at least r that multiplying for the r’th time increases the 
nullity by 1. But now we can work out by doing the right subtraction the number of jordan blocks of a 
certain size for a certain eigenvalue so they are indeed unique. 

Back to the existence proof. 

Definition: A generalized eigenspace is 𝑉𝑖 ≔ 𝐾𝑒𝑟((𝑎 − 𝜆𝑖𝐼)
𝑐𝜆𝑖) 

Lemma: V is the direct sum of generalized eigenspaces, ie linear combinations of them span V and are 
linearly independent. 

Proof: 𝑝𝑗(𝑡) ≔ ∏ (𝑡 − 𝜆𝑖)
𝑐𝜆𝑖𝑖≠𝑗 . Note that the highest common factor of 𝑝1, 𝑝2 is ∏ (𝑡 − 𝜆𝑖)

𝑐𝜆𝑖𝑘
𝑖=3 , so 

Bezout’s identity for polynomials (Level 4) means ∏ (𝑡 − 𝜆𝑖)
𝑐𝜆𝑖𝑘

𝑖=3  is a linear combination of 𝑝1, 𝑝2. But 
then ∏ (𝑡 − 𝜆𝑖)

𝑐𝜆𝑖
𝑘
𝑖=4  is the highest common factor of ∏ (𝑡 − 𝜆𝑖)

𝑐𝜆𝑖
𝑘
𝑖=3  and 𝑝3 and is thus a linear 

combination of 𝑝1, 𝑝2, 𝑝3. By repeated similar logic, or induction, whatever you want to call it, we have 
q polynomials such that ∑𝑝𝑖𝑞𝑖 = 1. This is actually always true for coprime sets of polynomials and 
numbers by similar logic so this is a useful idea to keep in mind for the future and not just this proof. 
We now define the map 𝜋𝑗 ≔ 𝑝𝑗(𝐴)𝑞𝑗(𝐴) = 𝑞𝑗(𝐴)𝑝𝑗(𝐴) (since factorizations like this of a matrix 
commute as we can expand them the same regardless of the order). Then by construction, ∑𝜋𝑗 = 𝐼. 
We will now call the minimal polynomial of A M. Then M(A)=0 by definition but we know 𝑀(𝑡) =

(𝑡 − 𝜆𝑗𝐼)
𝑐𝜆𝑗𝑝𝑗(𝑡), therefore 0 = 𝑀(𝐴)𝑞𝑗(𝐴) = (𝑡 − 𝜆𝑗𝐼)

𝑐𝜆𝑗𝜋𝑗(𝐴), so the image of 𝜋𝑗  is in the generalized 
eigenspace 𝑉𝑗. Now suppose v is in our vector space V, then 𝑣 = 𝐼𝑣 = ∑𝜋𝑗 𝑣 which is in the set of 
linear combinations of stuff in the generalized eigenspaces. To show that this is a direct sum, note 
that 𝜋𝑖𝜋𝑗 = 0 since the product contains M(A) as a factor. 𝜋𝑖 = 𝐼𝜋𝑖 = (∑𝜋𝑗)𝜋𝑖 = 𝜋𝑖

2, so 𝜋𝑖  is a 
projection onto some space, and this space we know is contained in 𝑉𝑖, and it is 𝑉𝑖 because 𝜋𝑖𝑣𝑖 = 𝑣𝑖. 
The reason is because 

i) If v is in a different eigenspace, such as 𝑉𝑗, then by definition (𝑎 − 𝜆𝑗𝐼)
𝑐𝜆𝑗𝑣 = 0, but then 𝜋𝑖  

contains (𝑎 − 𝜆𝑗𝐼)
𝑐𝜆𝑗  as a factor so if we move that factor to the right we have that 𝜋𝑖𝑣 = 0 



ii) If v is in 𝑉𝑖 then 𝑣 = 𝐼𝑣 = (∑𝑝𝑗𝑞𝑗)𝑣 = ∑𝜋𝑗𝑣 = 𝜋𝑖𝑣 since the other terms vanish. So done. 

Therefore by the projection property if a non-trivial linear combination of vectors in the 𝑉𝑖’s is 0, then 
doing 𝜋𝑖  will make that 0 for all i, which will extract each component and show that each component 
is 0. So V is the direct sum as claimed. 

We will now check that anything in a generalized eigenspace stays there under A. The proof is straight 
forward if we use the idea since we know that we can commute linear factors in a polynomial of the 
matrix: (𝐴 − 𝜆𝑖𝐼)

𝑐𝜆𝑖(𝐴𝑣) = 𝐴(𝐴 − 𝜆𝑖𝐼)
𝑐𝜆𝑖(𝑣) = 𝐴0 = 0, so Av is in the generalized eigenspace by 

definition, so if we make the basis around the generalized eigenspaces then the matrix must be block 
diagonal because of this. Now we will check that any of these blocks in this block diagonal matrix only 
has 1 eigenvalue. The reason is because if (𝐴 − 𝜇)𝑣 = 0 where we are only working in this specific 
generalized eigenspace. But then by definition of the eigenspace, (𝐴 − 𝜆𝑖𝐼)

𝑐𝜆𝑖𝑣 = 0. Then 
(𝐴 − 𝜆𝑖𝐼)𝑣 = (𝜇 − 𝜆𝑖)𝑣 if v is an eigenvector with eigenvalue µ, so 0 = (𝐴 − 𝜆𝑖𝐼)

𝑐𝜆𝑖𝑣 = (𝜇 − 𝜆𝑖)
𝑐𝜆𝑖𝑣, 

but v is not 0 so the only way this can happen is if 𝜇 = 𝜆𝑖 since this is just a constant that we are 
multiplying v by, so there is only one eigenvalue. Therefore if we can show the main theorem for 
matrices with only one eigenvalue, we are done. In fact, by subtracting λI, we can just show it for 
matrices where all eigenvalues are 0. Such matrices are called Nilpotent. Nilpotent is usually defined 
a different way but we will show that that definition is equivalent. 

Proposition: A matrix is Nilpotent if some power of it is the zero matrix. This is equivalent to the above 
definition. 

Proof: If all eigenvalues are 0 the other defintion follows from the cayley hamilton theorem. 
Conversely, suppose the matrix satisfies this other definition, then if an eigenvector has a non-zero 
eigenvalue then it will never go to 0 no matter how many times we multiply by the matrix, so all 
eigenvalues are 0. So done. 

So now we just need one more thing. 

Lemma: A nilpotent matrix is similar to a matrix in Jordan normal form. 

Proof: Now suppose we have a nilpotent n*n matrix 𝐿 with minimal polynomial 𝑡𝑘  with 𝑘 > 1 (since if 
k=1 the theorem is trivial). We see that the eigenvalue 0 has algebraic multiplicity n and geometric 
multiplicity n(L). L is not diagonalizable because otherwise it would be similar to the zero diagonal 
matrix and thus would equal zero. The images of 𝐿𝑛 as n increases from 0 to k form a subset chain, ie 
𝑉 ⊇ 𝐼𝑚(𝐿) ⊇ 𝐼𝑚(𝐿2)… ⊇ 𝐼𝑚(𝐿𝑘) = 0. This is because 𝐼𝑚(𝐿𝑎+1) ⊆ 𝐼𝑚(𝐿𝑎 ∘ 𝐿) ⊆ 𝐼𝑚(𝐿𝑎). These 
inclusions are actually strict since otherwise L would be a bijection on a non-zero vector space which 
is not possible since L is nilpotent. Therefore we have (by the rank nullity theorem, and the fact that a 
kernel of something is in a kernel of L times that thing) 0 ⊂ 𝐾𝑒𝑟(𝐿) ⊂ 𝐾𝑒𝑟(𝐿2)… ⊂ 𝐾𝑒𝑟(𝐿𝑘) = 𝑉. Let 
Ω𝑗 = 𝐾𝑒𝑟(𝐿) ∩ 𝐼𝑚(𝐿𝑗), then it is easy to see that 𝐾𝑒𝑟(𝐿) = Ω0 ⊇ Ω1 ⊇ Ω2 … ⊇ Ω𝑘 = 0. Now lets think 
about the rank of the product of two matrices: Rank(XY) is gonna have to be the dimension of the 
image of XY, which is the dimension of the image of Y minus the null space of X when restricted to the 
image of Y, which is Ker(X)∩Im(Y). Therefore we get the formula Rank(XY)=Rank(Y)-Dim(Ker(X)∩Im(Y)). 
Therefore 𝑑𝑗 ≔ 𝐷𝑖𝑚(Ω𝑗) = 𝑅𝑎𝑛𝑘(𝐿𝑗) − 𝑅𝑎𝑛𝑘(𝐿𝑗+1) with 𝑑𝑘 = 0. Now lets investigate Ω𝑘−1: Anything 
in the image of 𝐿𝑘−1 will be sent to 0 if it is multiplied by L again, therefore it is in the kernel of L, so the 
intersection definition reduces to Ω𝑘−1 = 𝐼𝑚(𝐿𝑘−1). We can obtain a basis for Ω𝑘−1. We will write this 

basis as 𝑤1, 𝑤2, …𝑤𝑠𝑘−1
 such that for each 𝑤𝑖 I can find a vector 𝑥𝑖

(𝑘−1) such that 𝐿𝑘−1𝑥𝑖
(𝑘−1)

= 𝑤𝑖. Now 



recall that Ω𝑘−2 = 𝐾𝑒𝑟(𝐿) ∩ 𝐼𝑚(𝐿𝑘−2). We can now extend the basis for Ω𝑘−1 to a basis for Ω𝑘−2. Lets 
write this new basis as 𝑤′1, 𝑤′2, …𝑤′𝑠𝑘−2

. Since each thing is in 𝐼𝑚(𝐿𝑘−2), I can find x’s such that we 

have that 𝐿𝑘−2𝑥𝑖
(𝑘−2)

= 𝑤′𝑖. Now note that we must have that 𝑠𝑗 = 𝑑𝑗 − 𝑑𝑗+1 from how we have been 
using the s’s. We will continue doing the process we have been doing to obtain a basis for 𝐾𝑒𝑟(𝐿). 

Now we want to construct jordan chains: We had that, eg, 𝐿𝑘−2𝑥𝑖
(𝑘−2)

= 𝑤′𝑖. The jordan chain is the 
following list of lists of vectors, and there is a jordan chain for each power of L. It’s a lot: 

𝐿𝑘−2𝑥𝑖
(𝑘−2)

= 𝑤′
𝑖 

𝐿𝑘−3𝑥𝑖
(𝑘−2) 

… 

𝐿𝑥𝑖
(𝑘−2) 

𝑥𝑖
(𝑘−2) 

For i (in this example) ranging from 1 to 𝑠𝑘−2. I now claim that, in fact, the set of all k jordan chains 
forms a basis for V. From the way I have written this out it seems like there are a ton of these vectors 
compared to what you would expect the dimension of V to be, but it works as in practice the s’s are 
often 0 so these don’t all come up. Therefore we need to check that there are n of these vectors and 
that they are linearly independent. The total is 𝑘𝑠𝑘−1 + (𝑘 − 1)𝑠𝑘−2 + (𝑘 − 2)𝑠𝑘−3 + ⋯+ 2𝑠1 + 𝑠0 
since we are adding up the size of the jordan chains. Lets manipulate this sum a bit, keeping in mind 
that 𝑑𝑘 = 0: 

∑(𝑗 + 1)𝑠𝑗

𝑘−1

𝑗=0

= ∑(𝑗 + 1)(𝑑𝑗 − 𝑑𝑗+1)

𝑘−1

𝑗=0

= ∑(𝑗 + 1)(𝑑𝑗)

𝑘−1

𝑗=0

− ∑(𝑗 + 1)(𝑑𝑗+1)

𝑘−1

𝑗=0

= 𝑑0 + ∑(𝑗 + 1)(𝑑𝑗)

𝑘−1

𝑗=1

− ∑(𝑗)(𝑑𝑗)

𝑘−1

𝑗=1

= 𝑑0 + ∑(𝑑𝑗)

𝑘−1

𝑗=1

= 𝑁(𝐿) + ∑ 𝑅𝑎𝑛𝑘(𝐿𝑗) − 𝑅𝑎𝑛𝑘(𝐿𝑗+1)

𝑘−1

𝑗=1

= 𝑁(𝐿) + 𝑅𝑎𝑛𝑘(𝐿) − 𝑅𝑎𝑛𝑘(𝐿𝑘) = 𝑛 

By the method of differences, the rank-nullity theorem, and the fact that 𝐿𝑘 = 0. So to check that we 
have a basis for V we just need to check that our vectors are linearly independent. We will now 
construct a few matrices: 

𝑄0 with the columns: 

𝑥1
(𝑘−1)

, 𝑥2
(𝑘−1)

, … , 𝑥𝑠𝑘−1⁡
(𝑘−1) 

𝑄1 with the columns: 

𝐿𝑥1
(𝑘−1)

, 𝐿𝑥2
(𝑘−1)

, … , 𝐿𝑥𝑠𝑘−1⁡
(𝑘−1)

, 𝑥1
(𝑘−2)

, 𝑥2
(𝑘−2)

, … , 𝑥𝑠𝑘−2⁡
(𝑘−2) 

 𝑄2 with the columns: 

𝐿2𝑥1
(𝑘−1)

, 𝐿2𝑥2
(𝑘−1)

, … , 𝐿2𝑥𝑠𝑘−1⁡
(𝑘−1)

, 𝐿𝑥1
(𝑘−2)

, 𝐿𝑥2
(𝑘−2)

, … , 𝐿𝑥𝑠𝑘−2⁡
(𝑘−2)

, 𝑥1
(𝑘−3)

, 𝑥2
(𝑘−3)

, … , 𝑥𝑠𝑘−3⁡
(𝑘−3) 

And so on until 𝑄𝑘−1. 



Now we define a matrix Q to have columns 𝑄𝑘−1, 𝑄𝑘−2, … , 𝑄2, 𝑄1, 𝑄0. Now we will ask ourselves what 
the solution is to Qz=0 for vectors z: We hope that this is just z=0 since this would verify linear 
independence. 

We will write 𝑧 =

[
 
 
 

…
…
𝑧̿
𝑧̅
𝑧̃ ]
 
 
 

 where each thingy here is a sub-vector corresponding to each 𝑄𝑖. We will now 

multiply the equation we are looking at on the left to get that 𝐿𝑘−1𝑄𝑧 = 0. By nilpotence, any column in 
Q that involves an L will go to 0 under the matrix 𝐿𝑘−1𝑄. But then consider what happens with 𝑄0: The 

vectors 𝑥1
(𝑘−2)

, 𝑥2
(𝑘−2)

, … , 𝑥𝑠𝑘−1⁡
(𝑘−1) when multiplied by 𝐿𝑘−1 are in the Ω’s, in fact one of the w’s from 

earlier and thus in the kernel of L and thus when we multiply them by we get 0. But with 𝑄1 and higher, 
we get a power of L above where we would be in the kernel and thus go to 0. Because the w’s were part 
of a basis and were linearly independent, it means that if 𝐿𝑘−1𝑄0𝑧 = 0 implies z=0. Therefore, we know 
now that 𝑧̃ = 0. Now we will look at 𝐿𝑘−2𝑄1𝑧 = 0, then by the same argument the only non vanishing 
parts are 𝑄0 and 𝑄1, but we are interested in  𝐿𝑘−2𝑄1 as those columns are the (w’)’s, which are again 
linearly independent by construction, so by the same argument we know that 𝑧̅ = 0. We can continue 
to do this and then we will get that z=0 so we indeed have a basis for V. We will now consider j ranging 
from 0 to k-1 v ranging from 1 to 𝑠𝑗  and the j+1 column matrix of columns 

[𝐿𝑗𝑥𝑣
(𝑗)

, 𝐿𝑗−1𝑥𝑣
(𝑗)

, … , 𝐿𝑥𝑣
(𝑗)

⁡, 𝑥𝑣
(𝑗)

] ≔ 𝑃𝑗,𝑣. Then 𝐿𝑃𝑗,𝑣 = [0, 𝐿𝑗𝑥𝑣
(𝑗)

, … , 𝐿2𝑥𝑣
(𝑗)

⁡, 𝐿𝑥𝑣
(𝑗)

] since𝐿𝑗𝑥𝑣
(𝑗) is in the 

kernel of L. What happens now is 𝑃𝑗,𝑣

(

 
 

0 1 … 0 0
… … … … …
0 0 … 1 0
0 0 … 0 1
0 0 … 0 0)

 
 

= 𝐿𝑃𝑗,𝑣 so we finally see some jordan stuff 

happening. We will make P out of all possible 𝑃𝑗,𝑣’s, then we will achieve our goal because 𝑃−1𝐿𝑃 is in 
jordan normal form: it is made out of the blocks corresponding to those 0-1 matrices we saw above. 
So done. 

Proposition: All of the following are equivalent to a matrix R being orthogonal: 

i) (𝑅𝑥). (𝑅𝑦) = (𝑥. 𝑦) 
ii) 𝑅𝑇𝑅 = 𝑅𝑅𝑇 = 𝐼 
iii) |𝑅𝑥| = 𝑥 for all vectors x 
iv) Columns of R are orthonormal 

Proof: See Groups notes – we just did this proof in that course. We define the special orthogonal group 
here but we just defined it in the groups course as well so please see that. 

We can think of O(n) as preserving lengths and angles and SO(n) as also preserving orientations. 

Lecture 24: 

For a rotation matrix R we can make a new orthonormal basis by 𝑢𝑖 = ∑ 𝑅𝑖𝑗𝑒𝑗𝑗 . We can think of it either 
as a change of basis or a transformation of vectors. The components of Rx with respect to the 
changed basis are the same as the components of x with respect to the normal basis. We can also 
think that a vector stays the same but the axes move in the opposite direction, ie by 𝑅−1. Consider an 

“inner product” given by (𝑥, 𝑦) = 𝑥𝑇 (
1 0
0 −1

) 𝑦. This not satisfy the properties that an inner product 



should satisfy because it is not positive definite, ie (x,x) is not necessarily a non-negative real number. 
However, the oother properties are satisfied if we are working in the real numbers. We still have that 
(1,0) ≔ 𝑒0 and (0,1) ≔ 𝑒1 are orthonormal in the sense that their product is 0, and their product with 
themselves are 1 and -1 respectively. This “inner product” is called the Minkowski metric and ℝ2 
equipped with this metric is called a Minkowski space. 

Note that a linear map  𝑇:ℝ2 → ℝ2 preserves the Minkowski metric if and only if (𝑇𝑥, 𝑇𝑦) = (𝑥, 𝑦) for 

all x and y. But then this means that (𝑀𝑥)𝑇𝐽(𝑀𝑦) = 𝑥𝑇𝐽𝑦 for all x and y where (1 0
0 −1

) = 𝐽. This holds 

if 𝑥𝑇𝑀𝑇𝐽𝑀𝑦 = 𝑥𝑇𝐽𝑦 so it holds always if 𝐽 = 𝑀𝑇𝐽𝑀. The matrices of this M for which this holds is a 
group as it contains the identity and is closed under inverses and products and matrix multiplication 
is associative. Also, we know that 𝐷𝑒𝑡(𝑀) = ±1 since the determinants have to agree. We will restrict 
this group to those with determinant +1. This is called the Lorentz group.  

Note that 𝑒0
𝑇𝑀𝑇𝐽𝑀𝑒0 = 𝑒0𝐽𝑒0 = 1 and we can use this to deduce that 𝑀00

2 − 𝑀10
2 = 1,𝑀01

2 − 𝑀11
2 = −1 

since we have decided to start zero indexing things now just because we figured that would be funny. 

We can then write this as (
±cosh⁡(𝜃) ±sinh⁡(𝜃)
±sinh⁡(𝜃) ±cosh⁡(𝜃)

). We will restrict the cosh terms to be positive and 

then the sinh terms can be any sign depending on the sign of 𝜃, so we can write (
cosh⁡(𝜃) sinh⁡(𝜃)
sinh⁡(𝜃) cosh⁡(𝜃)

) 

which we can now see forms a group since it is closed since multiplying them just adds the 𝜃s, so it is 
essentiallt the group of real numbers under addition (ie it is isomorphic). With the norms from the 
normal inner product, we got circles when we kept it constant. Now we can see that we will get 
hyperbolae when we do this. 𝑥𝑇𝐽𝑥 = 𝑥0

2 − 𝑥1
2 and we keep 𝑥0

2 − 𝑥1
2 = 𝑐 so we get a hyperbola. We can 

rewrite 𝑀(𝜃) =
1

√1−tanh2 𝜃
(

1 tanh⁡(𝜃)
tanh⁡(𝜃) 1

). Define 𝑣 ≔ tanh⁡(𝜃) and 𝑡 ≔ 𝑥0, 𝑥 ≔ 𝑥1. We can 

interpret v as the factor of the speed of light we are going at, and this has to be between -1 and 1. We 
can interpret 𝑎′ = 𝑀𝑎 for a=(t,x) as: 

𝑡′ =
1

√1 − 𝑣2
(𝑡 + 𝑣𝑥), 𝑥′ =

1

√1 − 𝑣2
(𝑥 + 𝑣𝑡) 

See level 8.5 to see why we are doing this: There is a physical interpretation for the idea that this gives 
relativistic effects. 


